25,946 research outputs found

    Massive higher spins and holography

    Full text link
    We review recent progress towards the understanding of higher spin gauge symmetry breaking in AdS space from a holographic vantage point. According to the AdS/CFT correspondence, N=4 SYM theory at vanishing coupling constant should be dual to a theory in AdS which exhibits higher spin gauge symmetry enhancement. When the SYM coupling is non-zero, all but a handful of HS currents are violated by anomalies, and correspondingly local higher spin symmetry in the bulk gets spontaneously broken. In agreement with previous results and holographic expectations, we find that, barring one notable exception (spin 1 eating spin 0), the Goldstone modes responsible for HS symmetry breaking in AdS have non-vanishing mass even in the limit in which the gauge symmetry is restored. We show that spontaneous breaking a' la Stueckelberg implies that the mass of the relevant spin s'=s-1 Goldstone field is exactly the one predicted by the correspondence.Comment: 8 pages, talk presented by M.B. at the "Fourth Meeting on Constrained Dynamics and Quantum gravity" held in Cala Gonone (Sardinia, Italy), September 12-16, 200

    Discovery Potential of SUSY and UED in ATLAS

    Get PDF
    This poster presents an evaluation of the discovery potential of Supersymmetry and Universal Extra Dimensions for channels with jets, leptons and missing transverse energy. The LHC running scenario at a centre-of-mass energy of 10 TeV, delivering an integrated luminosity of 200 inverse pb for the 2009-2010 run is investigated

    The metal and dust yields of the first massive stars

    Get PDF
    We quantify the role of Population (Pop) III core-collapse supernovae (SNe) as the first cosmic dust polluters. Starting from a homogeneous set of stellar progenitors with masses in the range [13 - 80] Msun, we find that the mass and composition of newly formed dust depend on the mixing efficiency of the ejecta and the degree of fallback experienced during the explosion. For standard Pop III SNe, whose explosions are calibrated to reproduce the average elemental abundances of Galactic halo stars with [Fe/H] < -2.5, between 0.18 and 3.1 Msun (0.39 - 1.76 Msun) of dust can form in uniformly mixed (unmixed) ejecta, and the dominant grain species are silicates. We also investigate dust formation in the ejecta of faint Pop III SN, where the ejecta experience a strong fallback. By examining a set of models, tailored to minimize the scatter with the abundances of carbon-enhanced Galactic halo stars with [Fe/H ] < -4, we find that amorphous carbon is the only grain species that forms, with masses in the range 2.7 10^{-3} - 0.27 Msun (7.5 10^{-4} - 0.11 Msun) for uniformly mixed (unmixed) ejecta models. Finally, for all the models we estimate the amount and composition of dust that survives the passage of the reverse shock, and find that, depending on circumstellar medium densities, between 3 and 50% (10 - 80%) of dust produced by standard (faint) Pop III SNe can contribute to early dust enrichment.Comment: Accepted by MNRAS, 22 pages, 12 figures, 12 table

    On the reconstruction of planar lattice-convex sets from the covariogram

    Full text link
    A finite subset KK of Zd\mathbb{Z}^d is said to be lattice-convex if KK is the intersection of Zd\mathbb{Z}^d with a convex set. The covariogram gKg_K of K⊆ZdK\subseteq \mathbb{Z}^d is the function associating to each u \in \integer^d the cardinality of K∩(K+u)K\cap (K+u). Daurat, G\'erard, and Nivat and independently Gardner, Gronchi, and Zong raised the problem on the reconstruction of lattice-convex sets KK from gKg_K. We provide a partial positive answer to this problem by showing that for d=2d=2 and under mild extra assumptions, gKg_K determines KK up to translations and reflections. As a complement to the theorem on reconstruction we also extend the known counterexamples (i.e., planar lattice-convex sets which are not reconstructible, up to translations and reflections) to an infinite family of counterexamples.Comment: accepted in Discrete and Computational Geometr

    Holographic tracking and sizing of optically trapped microprobes in diamond anvil cells

    Get PDF
    We demonstrate that Digital Holographic Microscopy can be used for accurate 3D tracking and sizing of a colloidal probe trapped in a diamond anvil cell (DAC). Polystyrene beads were optically trapped in water up to Gigapascal pressures while simultaneously recording in-line holograms at 1 KHz frame rate. Using Lorenz-Mie scattering theory to fit interference patterns, we detected a 10% shrinking in the bead’s radius due to the high applied pressure. Accurate bead sizing is crucial for obtaining reliable viscosity measurements and provides a convenient optical tool for the determination of the bulk modulus of probe material. Our technique may provide a new method for pressure measurements inside a DAC

    D-brane Instantons on the T^6/Z_3 orientifold

    Full text link
    We give a detailed microscopic derivation of gauge and stringy instanton generated superpotentials for gauge theories living on D3-branes at Z_3-orientifold singularities. Gauge instantons are generated by D(-1)-branes and lead to Affleck, Dine and Seiberg (ADS) like superpotentials in the effective N=1 gauge theories with three generations of bifundamental and anti/symmetric matter. Stringy instanton effects are generated by Euclidean ED3-branes wrapping four-cycles on T^6/\Z_3. They give rise to Majorana masses in one case and non-renormalizable superpotentials for the other cases. Finally we determine the conditions under which ADS like superpotentials are generated in N=1 gauge theories with adjoints, fundamentals, symmetric and antisymmetric chiral matter.Comment: 31 pages, no figure

    Galaxy Evolution in Local Group Analogs. I. A GALEX study of nearby groups

    Full text link
    Understanding the astrophysical processes acting within galaxy groups and their effects on the evolution of the galaxy population is one of the crucial topic of modern cosmology, as almost 60% of galaxies in the Local Universe are found in groups. We imaged in the far (FUV 1539 A) and near ultraviolet (NUV 2316 A) with GALEX three nearby groups, namely LGG93, LGG127 and LGG225. We obtained the UV galaxy surface photometry and, for LGG225, the only group covered by the SDSS, the photometry in u, g, r, i, z bands. We discuss galaxy morphologies looking for interaction signatures and we analyze the SED of galaxies to infer their luminosity-weighted ages. The UV and optical photometry was also used to perform a kinematical and dynamical analysis of each group and to evaluate the stellar mass. A few member galaxies in LGG225 show a distorted UV morphology due to ongoing interactions. (FUV-NUV) colors suggest that spirals in LGG93 and LGG225 host stellar populations in their outskirts younger than that of M31 and M33 in the LG or with less extinction. The irregular interacting galaxy NGC3447A has a significantly younger stellar population (few Myr old) than the average of the other irregular galaxies in LGG225 suggesting that the encounter triggered star formation. The early-type members of LGG225, NGC3457 and NGC3522, have masses of the order of a few 10^9 Mo, comparable to the Local Group ellipticals. For the most massive spiral in LGG225, we estimate a stellar mass of ~4x1010^{10} Mo, comparable to M33 in the LG. Ages of stellar populations range from a few to ~7 Gyr for the galaxies in LGG225. The kinematical and dynamical analysis indicates that LGG127 and LGG225 are in a pre-virial collapse phase, i.e. still undergoing dynamical relaxation, while LGG93 is likely virialized. (Abridged)Comment: 20 pages, 13 figures, accepted for publication in Astronomy and Astrophysic

    Glueball Scattering Amplitudes from Holography

    Full text link
    Using techniques developed in a previous paper three-point functions in field theories described by holographic renormalization group flows are computed. We consider a system of one active scalar and one inert scalar coupled to gravity. For the GPPZ flow, their dual operators create states that are interpreted as glueballs of the N=1 SYM theory, which lies at the infrared end of the renormalization group flow. The scattering amplitudes for three-glueball processes are calculated providing precise predictions for glueball decays in N=1 SYM theory. Numerical results for low-lying glueballs are included.Comment: 34 pages v2: comments on local terms and references added, v3: version published in JHE

    On Exact Symmetries and Massless Vectors in Holographic Flows and other Flux Vacua

    Get PDF
    We analyze the isometries of Type IIB flux vacua based on the Papadopolous-Tseytlin ansatz and identify the related massless bulk vector fields. To this end we devise a general ansatz, valid in any flux compactification, for the fluctuations of the metric and p-forms that diagonalizes the coupled equations. We then illustrate the procedure in the simple case of holographic flows driven by the RR 3-form flux only. Specifically we study the fate of the isometries of the Maldacena-Nunez solution associated to wrapped D5-branes.Comment: 23 page

    A search for changing-look AGN in the Grossan catalog

    Full text link
    We observed with XMM-Newton 4 objects selected from the Grossan catalog, with the aim to search for new 'changing-look' AGN. The sample includes all the sources which showed in subsequent observations a flux much lower than the one measured with HEAO A-1: NGC 7674, NGC 4968, IRAS 13218+0552 and NGC 1667. None of the sources was caught in a high flux state during the XMM-Newton observations, whose analysis reveal they are all likely Compton-thick objects. We suggest that, for all the sources, potential problems with the HEAO A-1 source identification and flux measurement prevent us from being certain that the HEAO A-1 data represent a putative 'high' state for these objects. Nonetheless, based on the high flux state and Compton-thin spectrum of its GINGA observation, NGC 7674 represents probably the sixth known case of a 'changing-look' Seyfert 2 galaxy. From the X-ray variability pattern, we can estimate a likely lower limit of a few parsec to the distance of the inner walls of the torus in this object. Remarkably, IRAS 13218+0552 was not detected by XMM-Newton, despite being currently classified as a Seyfert 1 with a large [OIII] flux. However, the original classification was likely to be affected by an extreme velocity outflow component in the emission lines. The object likely harbors an highly obscured AGN and should be re-classified as a Type 2 source.Comment: 11 pages, 12 figures, accepted for publication in A&
    • …
    corecore