4,479 research outputs found

### R\'enyi generalizations of quantum information measures

Quantum information measures such as the entropy and the mutual information
find applications in physics, e.g., as correlation measures. Generalizing such
measures based on the R\'enyi entropies is expected to enhance their scope in
applications. We prescribe R\'enyi generalizations for any quantum information
measure which consists of a linear combination of von Neumann entropies with
coefficients chosen from the set {-1,0,1}. As examples, we describe R\'enyi
generalizations of the conditional quantum mutual information, some quantum
multipartite information measures, and the topological entanglement entropy.
Among these, we discuss the various properties of the R\'enyi conditional
quantum mutual information and sketch some potential applications. We
conjecture that the proposed R\'enyi conditional quantum mutual informations
are monotone increasing in the R\'enyi parameter, and we have proofs of this
conjecture for some special cases.Comment: 9 pages, related to and extends the results from arXiv:1403.610

### The effects of upcoding, cream skimming and readmissions on the Italian hospitals efficiency: a population–based investigation

In this paper we analyze the effects of some distortions induced by prospective payment system, i.e. Upcoding, Cream Skimming and Readmissions, on hospitals’ technical efficiency. We estimate a production function using a population–based dataset composed by all active hospitals in an Italian region during the period 1998–2007. We show that cream skimming and upcoding have a negative impact on hospitals’ technical efficiency, while readmissions have a positive effect. Moreover, we find that private hospitals are more engaged in cream skimming than public and not–for–profit ones, while we observe no ownership differences regarding upcoding. Not–for–profit hospitals have the highest readmission index. Last, not–for–profit and public hospitals have the same efficiency levels, while private hospitals have the lowest technical efficiency.Upcoding, Cream Skimming, Readmission, Hospital Technical Efficiency, Ownership.

### Simultaneous Multiwavelength Observations of Magnetic Activity in Ultracool Dwarfs. IV. The Active, Young Binary NLTT 33370 AB (=2MASS J13142039+1320011)

We present multi-epoch simultaneous radio, optical, H{\alpha}, UV, and X-ray
observations of the active, young, low-mass binary NLTT 33370 AB (blended
spectral type M7e). This system is remarkable for its extreme levels of
magnetic activity: it is the most radio-luminous ultracool dwarf (UCD) known,
and here we show that it is also one of the most X-ray luminous UCDs known. We
detect the system in all bands and find a complex phenomenology of both flaring
and periodic variability. Analysis of the optical light curve reveals the
simultaneous presence of two periodicities, 3.7859 $\pm$ 0.0001 and 3.7130
$\pm$ 0.0002 hr. While these differ by only ~2%, studies of differential
rotation in the UCD regime suggest that it cannot be responsible for the two
signals. The system's radio emission consists of at least three components:
rapid 100% polarized flares, bright emission modulating periodically in phase
with the optical emission, and an additional periodic component that appears
only in the 2013 observational campaign. We interpret the last of these as a
gyrosynchrotron feature associated with large-scale magnetic fields and a cool,
equatorial plasma torus. However, the persistent rapid flares at all rotational
phases imply that small-scale magnetic loops are also present and reconnect
nearly continuously. We present an SED of the blended system spanning more than
9 orders of magnitude in wavelength. The significant magnetism present in NLTT
33370 AB will affect its fundamental parameters, with the components' radii and
temperatures potentially altered by ~+20% and ~-10%, respectively. Finally, we
suggest spatially resolved observations that could clarify many aspects of this
system's nature.Comment: emulateapj, 22 pages, 15 figures, ApJ in press; v2: fixes low-impact
error in Figure 15; v3: now in-pres

### Star formation properties of sub-mJy radio sources

We investigate the star formation properties of ~800 sources detected in one
of the deepest radio surveys at 1.4 GHz. Our sample spans a wide redshift range
(~0.1 - 4) and about four orders of magnitude in star formation rate (SFR). It
includes both star forming galaxies (SFGs) and active galactic nuclei (AGNs),
further divided into radio-quiet and radio-loud objects. We compare the SFR
derived from the far infrared luminosity, as traced by Herschel, with the SFR
computed from their radio emission. We find that the radio power is a good SFR
tracer not only for pure SFGs but also in the host galaxies of RQ AGNs, with no
significant deviation with redshift or specific SFR. Moreover, we quantify the
contribution of the starburst activity in the SFGs population and the
occurrence of AGNs in sources with different level of star formation. Finally
we discuss the possibility of using deep radio survey as a tool to study the
cosmic star formation history.Comment: 18 pages, 14 figures, 1 table (available in its entirety as ancillary
data

### Renyi generalizations of the conditional quantum mutual information

The conditional quantum mutual information $I(A;B|C)$ of a tripartite state
$\rho_{ABC}$ is an information quantity which lies at the center of many
problems in quantum information theory. Three of its main properties are that
it is non-negative for any tripartite state, that it decreases under local
operations applied to systems $A$ and $B$, and that it obeys the duality
relation $I(A;B|C)=I(A;B|D)$ for a four-party pure state on systems $ABCD$. The
conditional mutual information also underlies the squashed entanglement, an
entanglement measure that satisfies all of the axioms desired for an
entanglement measure. As such, it has been an open question to find R\'enyi
generalizations of the conditional mutual information, that would allow for a
deeper understanding of the original quantity and find applications beyond the
traditional memoryless setting of quantum information theory. The present paper
addresses this question, by defining different $\alpha$-R\'enyi generalizations
$I_{\alpha}(A;B|C)$ of the conditional mutual information, some of which we can
prove converge to the conditional mutual information in the limit
$\alpha\rightarrow1$. Furthermore, we prove that many of these generalizations
satisfy non-negativity, duality, and monotonicity with respect to local
operations on one of the systems $A$ or $B$ (with it being left as an open
question to prove that monotoniticity holds with respect to local operations on
both systems). The quantities defined here should find applications in quantum
information theory and perhaps even in other areas of physics, but we leave
this for future work. We also state a conjecture regarding the monotonicity of
the R\'enyi conditional mutual informations defined here with respect to the
R\'enyi parameter $\alpha$. We prove that this conjecture is true in some
special cases and when $\alpha$ is in a neighborhood of one.Comment: v6: 53 pages, final published versio

### The PEP Survey: Infrared Properties of Radio-Selected AGN

By exploiting the VLA-COSMOS and the Herschel-PEP surveys, we investigate the
Far Infrared (FIR) properties of radio-selected AGN. To this purpose, from
VLA-COSMOS we considered the 1537, F[1.4 GHz]>0.06 mJy sources with a reliable
redshift estimate, and sub-divided them into star-forming galaxies and AGN
solely on the basis of their radio luminosity. The AGN sample is complete with
respect to radio selection at all z<~3.5. 832 radio sources have a counterpart
in the PEP catalogue. 175 are AGN. Their redshift distribution closely
resembles that of the total radio-selected AGN population, and exhibits two
marked peaks at z~0.9 and z~2.5. We find that the probability for a
radio-selected AGN to be detected at FIR wavelengths is both a function of
radio power and redshift, whereby powerful sources are more likely to be FIR
emitters at earlier epochs. This is due to two distinct effects: 1) at all
radio luminosities, FIR activity monotonically increases with look-back time
and 2) radio activity of AGN origin is increasingly less effective at
inhibiting FIR emission. Radio-selected AGN with FIR emission are
preferentially located in galaxies which are smaller than those hosting
FIR-inactive sources. Furthermore, at all z<~2, there seems to be a
preferential (stellar) mass scale M ~[10^{10}-10^{11}] Msun which maximizes the
chances for FIR emission. We find such FIR (and MIR) emission to be due to
processes indistinguishable from those which power star-forming galaxies. It
follows that radio emission in at least 35% of the entire AGN population is the
sum of two contributions: AGN accretion and star-forming processes within the
host galaxy.Comment: 13 pages, 14 figures, to appear in MNRA

- …