291 research outputs found

    Using electrostatic potentials to predict DNA-binding sites on DNA-binding proteins

    Get PDF
    A method to detect DNA-binding sites on the surface of a protein structure is important for functional annotation. This work describes the analysis of residue patches on the surface of DNA-binding proteins and the development of a method of predicting DNA-binding sites using a single feature of these surface patches. Surface patches and the DNA-binding sites were initially analysed for accessibility, electrostatic potential, residue propensity, hydrophobicity and residue conservation. From this, it was observed that the DNA-binding sites were, in general, amongst the top 10% of patches with the largest positive electrostatic scores. This knowledge led to the development of a prediction method in which patches of surface residues were selected such that they excluded residues with negative electrostatic scores. This method was used to make predictions for a data set of 56 non-homologous DNA-binding proteins. Correct predictions made for 68% of the data set

    New guidelines for deposition of nucleic acid structures

    Get PDF

    An overview of the structures of protein-DNA complexes

    Get PDF
    On the basis of a structural analysis of 240 protein-DNA complexes contained in the Protein Data Bank (PDB), we have classified the DNA-binding proteins involved into eight different structural/functional groups, which are further classified into 54 structural families. Here we present this classification and review the functions, structures and binding interactions of these protein-DNA complexes

    Promoting a structural view of biology for varied audiences: an overview of RCSB PDB resources and experiences

    Get PDF
    The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) serves a community of users with diverse backgrounds and interests. In addition to processing, archiving and distributing structural data, it also develops educational resources and materials to enable people to utilize PDB data and to further a structural view of biology

    RCSB PDB Mobile: iOS and Android mobile apps to provide data access and visualization to the RCSB Protein Data Bank.

    Get PDF
    SummaryThe Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) resource provides tools for query, analysis and visualization of the 3D structures in the PDB archive. As the mobile Web is starting to surpass desktop and laptop usage, scientists and educators are beginning to integrate mobile devices into their research and teaching. In response, we have developed the RCSB PDB Mobile app for the iOS and Android mobile platforms to enable fast and convenient access to RCSB PDB data and services. Using the app, users from the general public to expert researchers can quickly search and visualize biomolecules, and add personal annotations via the RCSB PDB's integrated MyPDB service.Availability and implementationRCSB PDB Mobile is freely available from the Apple App Store and Google Play (http://www.rcsb.org)

    The RCSB PDB information portal for structural genomics

    Get PDF
    The RCSB Protein Data Bank (PDB) offers online tools, summary reports and target information related to the worldwide structural genomics initiatives from its portal at . There are currently three components to this site: Structural Genomics Initiatives contains information and links on each structural genomics site, including progress reports, target lists, target status, targets in the PDB and level of sequence redundancy; Targets provides combined target information, protocols and other data associated with protein structure determination; and Structures offers an assessment of the progress of structural genomics based on the functional coverage of the human genome by PDB structures, structural genomics targets and homology models. Functional coverage can be examined according to enzyme classification, gene ontology (biological process, cell component and molecular function) and disease
    • ÔÇŽ