9,035 research outputs found

    WKB Analysis of PT-Symmetric Sturm-Liouville problems

    Full text link
    Most studies of PT-symmetric quantum-mechanical Hamiltonians have considered the Schroedinger eigenvalue problem on an infinite domain. This paper examines the consequences of imposing the boundary conditions on a finite domain. As is the case with regular Hermitian Sturm-Liouville problems, the eigenvalues of the PT-symmetric Sturm-Liouville problem grow like n2n^2 for large nn. However, the novelty is that a PT eigenvalue problem on a finite domain typically exhibits a sequence of critical points at which pairs of eigenvalues cease to be real and become complex conjugates of one another. For the potentials considered here this sequence of critical points is associated with a turning point on the imaginary axis in the complex plane. WKB analysis is used to calculate the asymptotic behaviors of the real eigenvalues and the locations of the critical points. The method turns out to be surprisingly accurate even at low energies.Comment: 11 pages, 8 figure

    Quantum tunneling as a classical anomaly

    Full text link
    Classical mechanics is a singular theory in that real-energy classical particles can never enter classically forbidden regions. However, if one regulates classical mechanics by allowing the energy E of a particle to be complex, the particle exhibits quantum-like behavior: Complex-energy classical particles can travel between classically allowed regions separated by potential barriers. When Im(E) -> 0, the classical tunneling probabilities persist. Hence, one can interpret quantum tunneling as an anomaly. A numerical comparison of complex classical tunneling probabilities with quantum tunneling probabilities leads to the conjecture that as ReE increases, complex classical tunneling probabilities approach the corresponding quantum probabilities. Thus, this work attempts to generalize the Bohr correspondence principle from classically allowed to classically forbidden regions.Comment: 12 pages, 7 figure

    Harmonic oscillator well with a screened Coulombic core is quasi-exactly solvable

    Full text link
    In the quantization scheme which weakens the hermiticity of a Hamiltonian to its mere PT invariance the superposition V(x) = x^2+ Ze^2/x of the harmonic and Coulomb potentials is defined at the purely imaginary effective charges (Ze^2=if) and regularized by a purely imaginary shift of x. This model is quasi-exactly solvable: We show that at each excited, (N+1)-st harmonic-oscillator energy E=2N+3 there exists not only the well known harmonic oscillator bound state (at the vanishing charge f=0) but also a normalizable (N+1)-plet of the further elementary Sturmian eigenstates \psi_n(x) at eigencharges f=f_n > 0, n = 0, 1, ..., N. Beyond the first few smallest multiplicities N we recommend their perturbative construction.Comment: 13 pages, Latex file, to appear in J. Phys. A: Math. Ge

    PT-symmetric sextic potentials

    Get PDF
    The family of complex PT-symmetric sextic potentials is studied to show that for various cases the system is essentially quasi-solvable and possesses real, discrete energy eigenvalues. For a particular choice of parameters, we find that under supersymmetric transformations the underlying potential picks up a reflectionless part.Comment: 8 pages, LaTeX with amssym, no figure

    Complex Extension of Quantum Mechanics

    Get PDF
    It is shown that the standard formulation of quantum mechanics in terms of Hermitian Hamiltonians is overly restrictive. A consistent physical theory of quantum mechanics can be built on a complex Hamiltonian that is not Hermitian but satisfies the less restrictive and more physical condition of space-time reflection symmetry (PT symmetry). Thus, there are infinitely many new Hamiltonians that one can construct to explain experimental data. One might expect that a quantum theory based on a non-Hermitian Hamiltonian would violate unitarity. However, if PT symmetry is not spontaneously broken, it is possible to construct a previously unnoticed physical symmetry C of the Hamiltonian. Using C, an inner product is constructed whose associated norm is positive definite. This construction is completely general and works for any PT-symmetric Hamiltonian. Observables exhibit CPT symmetry, and the dynamics is governed by unitary time evolution. This work is not in conflict with conventional quantum mechanics but is rather a complex generalisation of it.Comment: 4 Pages, Version to appear in PR

    Semiclassical analysis of a complex quartic Hamiltonian

    Full text link
    It is necessary to calculate the C operator for the non-Hermitian PT-symmetric Hamiltonian H=\half p^2+\half\mu^2x^2-\lambda x^4 in order to demonstrate that H defines a consistent unitary theory of quantum mechanics. However, the C operator cannot be obtained by using perturbative methods. Including a small imaginary cubic term gives the Hamiltonian H=\half p^2+\half \mu^2x^2+igx^3-\lambda x^4, whose C operator can be obtained perturbatively. In the semiclassical limit all terms in the perturbation series can be calculated in closed form and the perturbation series can be summed exactly. The result is a closed-form expression for C having a nontrivial dependence on the dynamical variables x and p and on the parameter \lambda.Comment: 4 page

    Scalar Quantum Field Theory with Cubic Interaction

    Full text link
    In this paper it is shown that an i phi^3 field theory is a physically acceptable field theory model (the spectrum is positive and the theory is unitary). The demonstration rests on the perturbative construction of a linear operator C, which is needed to define the Hilbert space inner product. The C operator is a new, time-independent observable in PT-symmetric quantum field theory.Comment: Corrected expressions in equations (20) and (21

    Exact PT-Symmetry Is Equivalent to Hermiticity

    Full text link
    We show that a quantum system possessing an exact antilinear symmetry, in particular PT-symmetry, is equivalent to a quantum system having a Hermitian Hamiltonian. We construct the unitary operator relating an arbitrary non-Hermitian Hamiltonian with exact PT-symmetry to a Hermitian Hamiltonian. We apply our general results to PT-symmetry in finite-dimensions and give the explicit form of the above-mentioned unitary operator and Hermitian Hamiltonian in two dimensions. Our findings lead to the conjecture that non-Hermitian CPT-symmetric field theories are equivalent to certain nonlocal Hermitian field theories.Comment: Few typos have been corrected and a reference update

    An SCF-stabilization approach to excited states embedded in the continuum

    Get PDF
    By using SCF and stabilization‐like procedures, we have located a (π, π*) singlet resonance‐like state in ethylene at 10.21 eV. This state is embedded in the ionization continuum and carries an oscillator strength of 0.46 and is probably the analog to the spectroscopic V state in Hartree–Fock theory. Implications of these results for other systems are discussed

    Quantum counterpart of spontaneously broken classical PT symmetry

    Full text link
    The classical trajectories of a particle governed by the PT-symmetric Hamiltonian H=p2+x2(ix)ϵH=p^2+x^2(ix)^\epsilon (ϵ0\epsilon\geq0) have been studied in depth. It is known that almost all trajectories that begin at a classical turning point oscillate periodically between this turning point and the corresponding PT-symmetric turning point. It is also known that there are regions in ϵ\epsilon for which the periods of these orbits vary rapidly as functions of ϵ\epsilon and that in these regions there are isolated values of ϵ\epsilon for which the classical trajectories exhibit spontaneously broken PT symmetry. The current paper examines the corresponding quantum-mechanical systems. The eigenvalues of these quantum systems exhibit characteristic behaviors that are correlated with those of the associated classical system.Comment: 11 pages, 7 figure
    corecore