1,246 research outputs found

    EVALUATION OF FETAL WEIGHT SONOGRAPHICALLY USING AREA OF WHARTON'S JELLY AND MORPHOLOGY OF UMBILICAL CORD

    Get PDF
    Objective: To establish a sonographic relationship between Area of Wharton's Jelly (AWJ) and umbilical cord morphometry with the birth weight of the fetus in low-risk pregnancies from 13 to 40 weeks.Methods: A total of 800 singleton pregnant females were subjected for routine sonographic evaluation. The umbilical cord length, diameter, and AWJ were determined. The gestational age and fetal weight were determined using usual fetal parameters. Umbilical cord morphometry along with Area of Wharton Jelly can be utilized as other parameters to increase the accuracy of fetal weight.Results: In our study, the umbilical cord diameter at birth showed statistically significant positive correlation with birth weight (R=0.167; p<0.001). Umbilical cord length, diameter, and Area of Wharton Jelly showed statistically significant positive correlation with birth weight (p<0.001).Conclusion: Using statistical analysis, a positive correlation was established between estimated fetal weight and fetal age with umbilical cord morphometry and AWJ

    Minimal TestCase Generation for Object-Oriented Software with State Charts

    Full text link
    Today statecharts are a de facto standard in industry for modeling system behavior. Test data generation is one of the key issues in software testing. This paper proposes an reduction approach to test data generation for the state-based software testing. In this paper, first state transition graph is derived from state chart diagram. Then, all the required information are extracted from the state chart diagram. Then, test cases are generated. Lastly, a set of test cases are minimized by calculating the node coverage for each test case. It is also determined that which test cases are covered by other test cases. The advantage of our test generation technique is that it optimizes test coverage by minimizing time and cost. The present test data generation scheme generates test cases which satisfy transition path coverage criteria, path coverage criteria and action coverage criteria. A case study on Railway Ticket Vending Machine (RTVM) has been presented to illustrate our approach.Comment: 21 pages, 7 figures, 3-4 tables; International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.4, July 2012. arXiv admin note: substantial text overlap with arXiv:1206.037

    Physics Potential of the ICAL detector at the India-based Neutrino Observatory (INO)

    Get PDF
    The upcoming 50 kt magnetized iron calorimeter (ICAL) detector at the India-based Neutrino Observatory (INO) is designed to study the atmospheric neutrinos and antineutrinos separately over a wide range of energies and path lengths. The primary focus of this experiment is to explore the Earth matter effects by observing the energy and zenith angle dependence of the atmospheric neutrinos in the multi-GeV range. This study will be crucial to address some of the outstanding issues in neutrino oscillation physics, including the fundamental issue of neutrino mass hierarchy. In this document, we present the physics potential of the detector as obtained from realistic detector simulations. We describe the simulation framework, the neutrino interactions in the detector, and the expected response of the detector to particles traversing it. The ICAL detector can determine the energy and direction of the muons to a high precision, and in addition, its sensitivity to multi-GeV hadrons increases its physics reach substantially. Its charge identification capability, and hence its ability to distinguish neutrinos from antineutrinos, makes it an efficient detector for determining the neutrino mass hierarchy. In this report, we outline the analyses carried out for the determination of neutrino mass hierarchy and precision measurements of atmospheric neutrino mixing parameters at ICAL, and give the expected physics reach of the detector with 10 years of runtime. We also explore the potential of ICAL for probing new physics scenarios like CPT violation and the presence of magnetic monopoles.Comment: 139 pages, Physics White Paper of the ICAL (INO) Collaboration, Contents identical with the version published in Pramana - J. Physic

    Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV

    Get PDF
    Many measurements and searches for physics beyond the standard model at the LHC rely on the efficient identification of heavy-flavour jets, i.e. jets originating from bottom or charm quarks. In this paper, the discriminating variables and the algorithms used for heavy-flavour jet identification during the first years of operation of the CMS experiment in proton-proton collisions at a centre-of-mass energy of 13 TeV, are presented. Heavy-flavour jet identification algorithms have been improved compared to those used previously at centre-of-mass energies of 7 and 8 TeV. For jets with transverse momenta in the range expected in simulated tt‟\mathrm{t}\overline{\mathrm{t}} events, these new developments result in an efficiency of 68% for the correct identification of a b jet for a probability of 1% of misidentifying a light-flavour jet. The improvement in relative efficiency at this misidentification probability is about 15%, compared to previous CMS algorithms. In addition, for the first time algorithms have been developed to identify jets containing two b hadrons in Lorentz-boosted event topologies, as well as to tag c jets. The large data sample recorded in 2016 at a centre-of-mass energy of 13 TeV has also allowed the development of new methods to measure the efficiency and misidentification probability of heavy-flavour jet identification algorithms. The heavy-flavour jet identification efficiency is measured with a precision of a few per cent at moderate jet transverse momenta (between 30 and 300 GeV) and about 5% at the highest jet transverse momenta (between 500 and 1000 GeV)

    Evidence for the Higgs boson decay to a bottom quark–antiquark pair

    Get PDF
    info:eu-repo/semantics/publishe

    Pseudorapidity and transverse momentum dependence of flow harmonics in pPb and PbPb collisions

    Get PDF
    info:eu-repo/semantics/publishe

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð„with constraintsð ð ð„ „ ðandðŽð„ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Combined searches for the production of supersymmetric top quark partners in proton-proton collisions at root s=13 TeV