90 research outputs found

    Sample Size Calculation and Blinded Recalculation for Analysis of Covariance Models with Multiple Random Covariates

    Get PDF
    When testing for superiority in a parallel-group setting with a continuous outcome, adjusting for covariates is usually recommended. For this purpose, the analysis of covariance is frequently used, and recently several exact and approximate sample size calculation procedures have been proposed. However, in case of multiple covariates, the planning might pose some practical challenges and pitfalls. Therefore, we propose a method, which allows for blinded re-estimation of the sample size during the course of the trial. Simulations confirm that the proposed method provides reliable results in many practically relevant situations, and applicability is illustrated by a real-life data example

    High-Dimensional Repeated Measures

    Get PDF
    Recently, new tests for main and simple treatment effects, time effects, and treatment by time interactions in possibly high-dimensional multigroup repeated-measures designs with unequal covariance matrices have been proposed. Technical details for using more than one between-subject and more than one within-subject factor are presented in this article. Furthermore, application to electroencephalography (EEG) data of a neurological study with two whole-plot factors (diagnosis and sex) and two subplot factors (variable and region) is shown with the R package HRM (high-dimensional repeated measures)

    Pseudo-Ranks: How to Calculate Them Efficiently in R

    Get PDF
    Many popular nonparametric inferential methods are based on ranks. Among the most commonly used and most famous tests are for example the Wilcoxon-Mann-Whitney test for two independent samples, and the Kruskal-Wallis test for multiple independent groups. However, recently, it has become clear that the use of ranks may lead to paradoxical results in case of more than two groups. Luckily, these problems can be avoided simply by using pseudo-ranks instead of ranks. These pseudo-ranks, however, suffer from being (a) at first less intuitive and not as straightforward in their interpretation, (b) computationally much more expensive to calculate. The computational cost has been prohibitive, for example, for large-scale simulative evaluations or application of resampling-based pseudorank procedures. In this paper, we provide different algorithms to calculate pseudo-ranks efficiently in order to solve problem (b) and thus render it possible to overcome the current limitations of procedures based on pseudo-ranks
    • …
    corecore