17,890 research outputs found

    Enhancing urban analysis through lacunarity multiscale measurement

    Get PDF
    Urban spatial configurations in most part of the developing countries showparticular urban forms associated with the more informal urban development ofthese areas. Latin American cities are prime examples of this sort, butinvestigation of these urban forms using up to date computational and analyticaltechniques are still scarce. The purpose of this paper is to examine and extendthe methodology of multiscale analysis for urban spatial patterns evaluation. Weexplain and explore the use of Lacunarity based measurements to follow a lineof research that might make more use of new satellite imagery information inurban planning contexts. A set of binary classifications is performed at differentthresholds on selected neighbourhoods of a small Brazilian town. Theclassifications are appraised and lacunarity measurements are compared in faceof the different geographic referenced information for the same neighbourhoodareas. It was found that even with the simple image classification procedure, animportant amount of spatial configuration characteristics could be extracted withthe analytical procedure that, in turn, may be used in planning and other urbanstudies purposes

    A new algorithm for generalized fractional programs

    Get PDF
    A new dual problem for convex generalized fractional programs with no duality gap is presented and it is shown how this dual problem can be efficiently solved using a parametric approach. The resulting algorithm can be seen as “dual†to the Dinkelbach-type algorithm for generalized fractional programs since it approximates the optimal objective value of the dual (primal) problem from below. Convergence results for this algorithm are derived and an easy condition to achieve superlinear convergence is also established. Moreover, under some additional assumptions the algorithm also recovers at the same time an optimal solution of the primal problem. We also consider a variant of this new algorithm, based on scaling the “dual†parametric function. The numerical results, in case of quadratic-linear ratios and linear constraints, show that the performance of the new algorithm and its scaled version is superior to that of the Dinkelbach-type algorithms. From the computational results it also appears that contrary to the primal approach, the “dual†approach is less influenced by scaling.fractional programming;generalized fractional programming;Dinkelbach-type algorithms;quasiconvexity;Karush-Kuhn-Tucker conditions;duality

    New planetary and EB candidates from Campaigns 1-6 of the K2 mission

    Full text link
    With only two functional reaction wheels, Kepler cannot maintain stable pointing at its original target field and entered a new mode of observation called K2. Our method is based on many years of experience in planet hunting for the CoRoT mission. Due to the unstable pointing, K2 light curves present systematics that are correlated with the target position in the CCD. Therefore, our pipeline also includes a decorrelation of this systematic noise. Our pipeline is optimised for bright stars for which spectroscopic follow-up is possible. We achieve a maximum precision on 6 hours of 6 ppm. The decorrelated light curves are searched for transits with an adapted version of the CoRoT alarm pipeline. We present 172 planetary candidates and 327 eclipsing binary candidates from campaigns 1, 2, 3, 4, 5 and 6 of K2. Both the planetary candidates and eclipsing binary candidates lists are made public to promote follow-up studies. The light curves will also be available to the community.Comment: 22 pages. 5 figures, 4 tables, Accepted for publication in A&
    corecore