1,654 research outputs found

    Relaxed Game Chromatic Numbers of Complete Multipartite Graphs

    Get PDF
    Competitive graph coloring is investigated by studying a game with two players, Alice and Bob, on a finite graph G with a set of r colors. Alice and Bob alternately color the vertices of G with legal colors. In the k-relaxed coloring game, a color c is legal for a vertex v if v has at most k neighbors previously colored c. New results about the 0, 1, and 2-relaxed game chromatic numbers will be presented, completely classifying the 0 and 1-relaxed games and partially classifying the 2-relaxed game. These results will be presented in the context of previous research and given a direction of where they need to go next

    A generalized no-broadcasting theorem

    Get PDF
    We prove a generalized version of the no-broadcasting theorem, applicable to essentially \emph{any} nonclassical finite-dimensional probabilistic model satisfying a no-signaling criterion, including ones with ``super-quantum'' correlations. A strengthened version of the quantum no-broadcasting theorem follows, and its proof is significantly simpler than existing proofs of the no-broadcasting theorem.Comment: 4 page

    Investigation of iterative image reconstruction in three-dimensional optoacoustic tomography

    Full text link
    Iterative image reconstruction algorithms for optoacoustic tomography (OAT), also known as photoacoustic tomography, have the ability to improve image quality over analytic algorithms due to their ability to incorporate accurate models of the imaging physics, instrument response, and measurement noise. However, to date, there have been few reported attempts to employ advanced iterative image reconstruction algorithms for improving image quality in three-dimensional (3D) OAT. In this work, we implement and investigate two iterative image reconstruction methods for use with a 3D OAT small animal imager: namely, a penalized least-squares (PLS) method employing a quadratic smoothness penalty and a PLS method employing a total variation norm penalty. The reconstruction algorithms employ accurate models of the ultrasonic transducer impulse responses. Experimental data sets are employed to compare the performances of the iterative reconstruction algorithms to that of a 3D filtered backprojection (FBP) algorithm. By use of quantitative measures of image quality, we demonstrate that the iterative reconstruction algorithms can mitigate image artifacts and preserve spatial resolution more effectively than FBP algorithms. These features suggest that the use of advanced image reconstruction algorithms can improve the effectiveness of 3D OAT while reducing the amount of data required for biomedical applications

    Computational analyses of the surface properties of protein–protein interfaces

    Get PDF
    This paper presents a survey of techniques that explore the surface properties of protein:protein interfaces so as to inform the prediction of probable sites of protein:protein interaction on newly determined protein structures

    The linearization of the Kodama state

    Full text link
    We study the question of whether the linearization of the Kodama state around classical deSitter spacetime is normalizable in the inner product of the theory of linearized gravitons on deSitter spacetime. We find the answer is no in the Lorentzian theory. However, in the Euclidean theory the corresponding linearized Kodama state is delta-functional normalizable. We discuss whether this result invalidates the conjecture that the full Kodama state is a good physical state for quantum gravity with positive cosmological constant.Comment: 14 pages, statement on the corresponding Yang-Mills case correcte

    Lack of trust in maternal support is associated with negative interpretations of ambiguous maternal behavior

    Get PDF
    Attachment theory assumes that children who lack trust in maternal availability for support are more inclined to interpret maternal behavior in congruence with their expectation that mother will remain unavailable for support. To provide the first test of this assumption, early adolescents (9-13 years old) were asked to assess whether ambiguous interactions with mother should be interpreted in a positive or a negative way. In our sample (n = 322), results showed that early adolescents' lack of trust in their mother's availability for support was related to more negative interpretations of maternal behavior. The associations remained significant after controlling for depressive mood. The importance of these findings for our understanding of attachment theory, attachment stability, and clinical practice are discussed

    Scleromochlus and the early evolution of Pterosauromorpha

    Get PDF
    Pterosaurs, the first vertebrates to evolve powered flight, were key components of Mesozoic terrestrial ecosystems from their sudden appearance in the Late Triassic until their demise at the end of the Cretaceous1,2,3,4,5,6. However, the origin and early evolution of pterosaurs are poorly understood owing to a substantial stratigraphic and morphological gap between these reptiles and their closest relatives6, Lagerpetidae7. Scleromochlus taylori, a tiny reptile from the early Late Triassic of Scotland discovered over a century ago, was hypothesized to be a key taxon closely related to pterosaurs8, but its poor preservation has limited previous studies and resulted in controversy over its phylogenetic position, with some even doubting its identification as an archosaur9. Here we use microcomputed tomographic scans to provide the first accurate whole-skeletal reconstruction and a revised diagnosis of Scleromochlus, revealing new anatomical details that conclusively identify it as a close pterosaur relative1 within Pterosauromorpha (the lagerpetid + pterosaur clade). Scleromochlus is anatomically more similar to lagerpetids than to pterosaurs and retains numerous features that were probably present in very early diverging members of Avemetatarsalia (bird-line archosaurs). These results support the hypothesis that the first flying reptiles evolved from tiny, probably facultatively bipedal, cursorial ancestors1

    100 million years of turtle paleoniche dynamics enable the prediction of latitudinal range shifts in a warming world

    Get PDF
    Past responses to environmental change provide vital baseline data for estimating the potential resilience of extant taxa to future change. Here, we investigate the latitudinal range contraction that terrestrial and freshwater turtles (Testudinata) experienced from the Late Cretaceous to the Paleogene (100.5-23.03 mya) in response to major climatic changes. We apply ecological niche modeling (ENM) to reconstruct turtle niches, using ancient and modern distribution data, paleogeographic reconstructions, and the HadCM3L climate model to quantify their range shifts in the Cretaceous and late Eocene. We then use the insights provided by these models to infer their probable ecological responses to future climate scenarios at different representative concentration pathways (RCPs 4.5 and 8.5 for 2100), which project globally increased temperatures and spreading arid biomes at lower to mid-latitudes. We show that turtle ranges are predicted to expand poleward in the Northern Hemisphere, with decreased habitat suitability at lower latitudes, inverting a trend of latitudinal range contraction that has been prevalent since the Eocene. Trionychids and freshwater turtles can more easily track their niches than Testudinidae and other terrestrial groups. However, habitat destruction and fragmentation at higher latitudes will probably reduce the capability of turtles and tortoises to cope with future climate changes

    Experimental Quantum Teleportation of a Two-Qubit Composite System

    Full text link
    Quantum teleportation, a way to transfer the state of a quantum system from one location to another, is central to quantum communication and plays an important role in a number of quantum computation protocols. Previous experimental demonstrations have been implemented with photonic or ionic qubits. Very recently long-distance teleportation and open-destination teleportation have also been realized. Until now, previous experiments have only been able to teleport single qubits. However, since teleportation of single qubits is insufficient for a large-scale realization of quantum communication and computation2-5, teleportation of a composite system containing two or more qubits has been seen as a long-standing goal in quantum information science. Here, we present the experimental realization of quantum teleportation of a two-qubit composite system. In the experiment, we develop and exploit a six-photon interferometer to teleport an arbitrary polarization state of two photons. The observed teleportation fidelities for different initial states are all well beyond the state estimation limit of 0.40 for a two-qubit system. Not only does our six-photon interferometer provide an important step towards teleportation of a complex system, it will also enable future experimental investigations on a number of fundamental quantum communication and computation protocols such as multi-stage realization of quantum-relay, fault-tolerant quantum computation, universal quantum error-correction and one-way quantum computation.Comment: 16pages, 4 figure
    corecore