11 research outputs found

    Estrategias innovadoras de bioconservaci贸n en la industria alimentaria

    Get PDF
    Uno de los debates m谩s significativos en el campo de la producci贸n de alimentos es la creciente preocupaci贸n de los consumidores por seguir una alimentaci贸n m谩s natural. El rechazo hacia los aditivos qu铆micos ha promovido el desarrollo de lo que se conoce con el t茅rmino 鈥渂ioconservaci贸n鈥, dentro de la que, particularmente, se han impulsado estudios acerca del uso de bacterias, sus metabolitos y bacteri贸fagos como posibles antimicrobianos naturales que permiten aumentar la vida 煤til de los alimentos y garantizar su seguridad microbiol贸gica. En la presente revisi贸n bibliogr谩fica se muestra un panorama general de qu茅 son estos antimicrobianos naturales proporcionando informaci贸n respecto a su clasificaci贸n, modo de acci贸n y aplicaciones en productos alimenticios. Asimismo, se incluye tambi茅n informaci贸n sobre estrategias basadas en el quorum sensing y su inhibici贸n para evitar la proliferaci贸n de microorganismos pat贸genos y alterantes. Hasta el momento, los resultados obtenidos en estos campos de investigaci贸n son bastante prometedores, en especial en cuanto al empleo de algunas bacteriocinas como la nisina y el antif煤ngico natamicina, que han sido por ahora los compuestos m谩s estudiados. No obstante, se contin煤a investigando para promover su aplicaci贸n como sustitutos de los conservantes sint茅ticos en alimentos.M谩ster en Calidad, Desarrollo e Innovaci贸n de Alimento

    Application of lactic acid bacteria for the biopreservation of meat products: A systematic review

    Get PDF
    Systematic ReviewThe increasing concern of consumers about food quality and safety and their rejection of chemical additives has promoted the breakthrough of the biopreservation field and the development of studies on the use of beneficial bacteria and their metabolites as potential natural antimicrobials for shelf life extension and enhanced food safety. Control of foodborne pathogens in meat and meat products represents a serious challenge for the food industry which can be addressed through the intelligent use of bio-compounds or biopreservatives. This article aims to systematically review the available knowledge about biological strategies based on the use of lactic acid bacteria to control the proliferation of undesirable microorganisms in different meat products. The outcome of the literature search evidenced the potential of several strains of lactic acid bacteria and their purified or semi- purified antimicrobial metabolites as biopreservatives in meat products for achieving longer shelf life or inhibiting spoilage and pathogenic bacteria, especially when combined with other technologies to achieve a synergistic effect.S

    Application of lactic acid bacteria for the biopreservation of meat products: A systematic review

    Get PDF
    .The increasing concern of consumers about food quality and safety and their rejection of chemical additives has promoted the breakthrough of the biopreservation field and the development of studies on the use of beneficial bacteria and their metabolites as potential natural antimicrobials for shelf life extension and enhanced food safety. Control of foodborne pathogens in meat and meat products represents a serious challenge for the food industry which can be addressed through the intelligent use of bio-compounds or biopreservatives. This article aims to systematically review the available knowledge about biological strategies based on the use of lactic acid bacteria to control the proliferation of undesirable microorganisms in different meat products. The outcome of the literature search evidenced the potential of several strains of lactic acid bacteria and their purified or semi-purified antimicrobial metabolites as biopreservatives in meat products for achieving longer shelf life or inhibiting spoilage and pathogenic bacteria, especially when combined with other technologies to achieve a synergistic effect.S

    Microbiological Safety and Shelf-Life of Low-Salt Meat Products鈥擜 Review

    Get PDF
    [EN] Salt is widely employed in different foods, especially in meat products, due to its very diverse and extended functionality. However, the high intake of sodium chloride in human diet has been under consideration for the last years, because it is related to serious health problems. The meat-processing industry and research institutions are evaluating different strategies to overcome the elevated salt concentrations in products without a quality reduction. Several properties could be directly or indirectly affected by a sodium chloride decrease. Among them, microbial stability could be shifted towards pathogen growth, posing a serious public health threat. Nonetheless, the majority of the literature available focuses attention on the sensorial and technological challenges that salt reduction implies. Thereafter, the need to discuss the consequences for shelf-life and microbial safety should be considered. Hence, this review aims to merge all the available knowledge regarding salt reduction in meat products, providing an assessment on how to obtain low salt products that are sensorily accepted by the consumer, technologically feasible from the perspective of the industry, and, in particular, safe with respect to microbial stability.S

    High pressure processing at the early stages of ripening enhances the safety and quality of dry fermented sausages elaborated with or without starter culture

    Get PDF
    [EN] To study the quality of chorizo de Le贸n dry fermented sausages (DFS), high pressure processing (HPP) applied at the early stages of ripening and the use of a functional starter culture were evaluated as additional safety measures. Furthermore, the ability to control the populations of artificially inoculated Listeria monocytogenes and Salmonella Typhimurium was investigated and the evolution of microbial communities was assessed by amplicon 16S rRNA metataxonomics. The use of HPP and the starter culture, independently or combined, induced a reduction of Listeria monocytogenes of 1.5, 4.3 and > 4.8 log CFU/g respectively, as compared to control. Salmonella Typhimurium counts were under the detection limit (<1 log) in all treated end-product samples. Both additional measures reduced the activity of undesirable microbiota, such as Serratia and Brochothrix, during the production of DFS. Moreover, the starter culture highly influenced the taxonomic profile of samples. No adverse sensory effects were observed, and panelists showed preference for HPP treated DFS. In conclusion, this new approach of applying HPP at the early stages of ripening of DFS in combination with the use of a defined starter culture improved the safety and quality of the meat productS

    Selection of lactic acid bacteria as biopreservation agents and optimization of their mode of application for the control of Listeria monocytogenes in ready-to-eat cooked meat products

    Get PDF
    [EN] In order to meet consumers麓demands for more natural foods and to find new methods to control foodborne pathogens in them, research is currently being focused on alternative preservation approaches, such as biopreservation with lactic acid bacteria (LAB). Here, a collection of lactic acid bacteria (LAB) isolates was characterized to identify potential biopreservative agents. Six isolates (one Lactococcus lactis, one Lacticaseibacillus paracasei and four Lactiplantibacillus plantarum) were selected based on their antimicrobial activity in in vitro assays. Whole genome sequencing showed that none of the six LAB isolates carried known virulence factors or acquired antimicrobial resistance genes, and that the L. lactis isolate was potentially a nisin Z producer. Growth of L. monocytogenes was successfully limited by L. lactis ULE383, L. paracasei ULE721 and L. plantarum ULE1599 throughout the shelf-life of cooked ham, meatloaf and roasted pork shoulder. These LAB isolates were also applied individually or as a cocktail at different inoculum concentrations (4, 6 and 8 log10 CFU/g) in challenge test studies involving cooked ham, showing a stronger anti-Listerial activity when a cocktail was used at 8 log10 CFU/g. Thus, a reduction of up to ~5.0 log10 CFU/g in L. monocytogenes growth potential was attained in cooked ham packaged under vacuum, modified atmosphere packaging or vacuum followed by high pressure processing (HPP). Only minor changes in color and texture were induced, although there was a significant acidification of the product when the LAB cultures were applied. Remarkably, this acidification was delayed when HPP was applied to the LAB inoculated batches. Metataxonomic analyses showed that the LAB cocktail was able to grow in the cooked ham and outcompete the indigenous microbiota, including spoilage microorganisms such as Brochothrix. Moreover, none of the batches were considered unacceptable in a sensory evaluation. Overall, this study shows the favourable antilisterial activity of the cocktail of LAB employed, with the combination of HPP and LAB achieving a complete inhibition of the pathogen with no detrimental effects in physico-chemical or sensorial evaluations, highlighting the usefulness of biopreservation approaches involving LAB for enhancing the safety of cooked meat products.S

    Microbiological Safety and Shelf-Life of Low-Salt Meat Products鈥擜 Review

    No full text
    Salt is widely employed in different foods, especially in meat products, due to its very diverse and extended functionality. However, the high intake of sodium chloride in human diet has been under consideration for the last years, because it is related to serious health problems. The meat-processing industry and research institutions are evaluating different strategies to overcome the elevated salt concentrations in products without a quality reduction. Several properties could be directly or indirectly affected by a sodium chloride decrease. Among them, microbial stability could be shifted towards pathogen growth, posing a serious public health threat. Nonetheless, the majority of the literature available focuses attention on the sensorial and technological challenges that salt reduction implies. Thereafter, the need to discuss the consequences for shelf-life and microbial safety should be considered. Hence, this review aims to merge all the available knowledge regarding salt reduction in meat products, providing an assessment on how to obtain low salt products that are sensorily accepted by the consumer, technologically feasible from the perspective of the industry, and, in particular, safe with respect to microbial stability

    Lab day

    No full text
    Videojuego realizado con motivo del D铆a Internacional de la Mujer y la Ni帽a en la Ciencia por varias investigadoras de los grupos de investigaci贸n BALAT y NEWTEC. El objetivo es mostrar como se trabaja en un laboratorio, en concreto de microbiolog铆a de los alimentos, a trav茅s de un caso ficticio de un queso contaminado con microorganismos pat贸genos. Durante el videojuego las investigadoras, con ayuda de los jugadores, intentan resolver este brote de origen alimentario

    Pioneras en Ciencia

    No full text
    Serie: Talleres del "D铆a internacional de la mujer y la ni帽a en la ciencia

    Candida bloodstream infections in intensive care units: analysis of the extended prevalence of infection in intensive care unit study

    No full text
    Item does not contain fulltextOBJECTIVES: To provide a global, up-to-date picture of the prevalence, treatment, and outcomes of Candida bloodstream infections in intensive care unit patients and compare Candida with bacterial bloodstream infection. DESIGN: A retrospective analysis of the Extended Prevalence of Infection in the ICU Study (EPIC II). Demographic, physiological, infection-related and therapeutic data were collected. Patients were grouped as having Candida, Gram-positive, Gram-negative, and combined Candida/bacterial bloodstream infection. Outcome data were assessed at intensive care unit and hospital discharge. SETTING: EPIC II included 1265 intensive care units in 76 countries. PATIENTS: Patients in participating intensive care units on study day. INTERVENTIONS: None. MEASUREMENT AND MAIN RESULTS: Of the 14,414 patients in EPIC II, 99 patients had Candida bloodstream infections for a prevalence of 6.9 per 1000 patients. Sixty-one patients had candidemia alone and 38 patients had combined bloodstream infections. Candida albicans (n = 70) was the predominant species. Primary therapy included monotherapy with fluconazole (n = 39), caspofungin (n = 16), and a polyene-based product (n = 12). Combination therapy was infrequently used (n = 10). Compared with patients with Gram-positive (n = 420) and Gram-negative (n = 264) bloodstream infections, patients with candidemia were more likely to have solid tumors (p < .05) and appeared to have been in an intensive care unit longer (14 days [range, 5-25 days], 8 days [range, 3-20 days], and 10 days [range, 2-23 days], respectively), but this difference was not statistically significant. Severity of illness and organ dysfunction scores were similar between groups. Patients with Candida bloodstream infections, compared with patients with Gram-positive and Gram-negative bloodstream infections, had the greatest crude intensive care unit mortality rates (42.6%, 25.3%, and 29.1%, respectively) and longer intensive care unit lengths of stay (median [interquartile range]) (33 days [18-44], 20 days [9-43], and 21 days [8-46], respectively); however, these differences were not statistically significant. CONCLUSION: Candidemia remains a significant problem in intensive care units patients. In the EPIC II population, Candida albicans was the most common organism and fluconazole remained the predominant antifungal agent used. Candida bloodstream infections are associated with high intensive care unit and hospital mortality rates and resource use
    corecore