250 research outputs found

    Hydrophobic interactions with coarse-grained model for water

    Full text link
    Integral equation theory is applied to a coarse-grained model of water to study potential of mean force between hydrophobic solutes. Theory is shown to be in good agreement with the available simulation data for methane-methane and fullerene-fullerene potential of mean force in water; the potential of mean force is also decomposed into its entropic and enthalpic contributions. Mode coupling theory is employed to compute self-diffusion coefficient of water, as well as diffusion coefficient of a dilute hydrophobic solute; good agreement with molecular dynamics simulation results is found

    Evidence of two viscous relaxation processes in the collective dynamics of liquid lithium

    Full text link
    New inelastic X-ray scattering experiments have been performed on liquid lithium in a wide wavevector range. With respect to the previous measurements, the instrumental resolution, improved up to 1.5 meV, allows to accurately investigate the dynamical processes determining the observed shape of the the dynamic structure factor, S(Q,ω)S(Q,\omega). A detailed analysis of the lineshapes shows the co-existence of relaxation processes with both a slow and a fast characteristic timescales, and therefore that pictures of the relaxation mechanisms based on a simple viscoelastic model must be abandoned.Comment: 5 pages, 4 .PS figure

    Comment on "Collective dynamics in liquid lithium, sodium, and aluminum"

    Full text link
    In a recent paper, S. Singh and K. Tankeshwar (ST), [Phys. Rev. E \textbf{67}, 012201 (2003)], proposed a new interpretation of the collective dynamics in liquid metals, and, in particular, of the relaxation mechanisms ruling the density fluctuations propagation. At variance with both the predictions of the current literature and the results of recent Inelastic X-ray Scattering (IXS) experiments, ST associate the quasielastic component of the S(Q,ω)S(Q,\omega) to the thermal relaxation, as it holds in an ordinary adiabatic hydrodynamics valid for non-conductive liquids and in the Q→0Q \to 0 limit. We show here that this interpretation leads to a non-physical behaviour of different thermodynamic and transport parameters.Comment: 4 pages, 1 figure, to appear in PRE (scheduled in 1 June issue

    Structural and Dynamical Anomalies of a Gaussian Core Fluid: a Mode Coupling Theory Study

    Full text link
    We present a theoretical study of transport properties of a liquid comprised of particles uist1:/home/sokrates/egorov/oldhome/Pap41/Submit > m abs.tex We present a theoretical study of transport properties of a liquid comprised of particles interacting via Gaussian Core pair potential. Shear viscosity and self-diffusion coefficient are computed on the basis of the mode-coupling theory, with required structural input obtained from integral equation theory. Both self-diffusion coefficient and viscosity display anomalous density dependence, with diffusivity increasing and viscosity decreasing with density within a particular density range along several isotherms below a certain temperature. Our theoretical results for both transport coefficients are in good agreement with the simulation data

    Cooperativity Beyond Caging: Generalized Mode Coupling Theory

    Full text link
    The validity of mode coupling theory (MCT) is restricted by an uncontrolled factorization approximation of density correlations. The factorization can be delayed and ultimately avoided, however, by explicitly including higher order correlations. We explore this approach within a microscopically motivated schematic model. Analytic tractability allows us to discuss in great detail the impact of factorization at arbitrary order, including the limit of avoided factorization. Our results indicate a coherent picture for the capabilities as well as limitations of MCT. Moreover, including higher order correlations systematically defers the transition and ultimately restores ergodicity. Power-law divergence of the relaxation time is then replaced by continuous but exponential growth.Comment: 4 pages, 2 figure

    Spatial correlations in sheared isothermal liquids : From elastic particles to granular particles

    Full text link
    Spatial correlations for sheared isothermal elastic liquids and granular liquids are theoretically investigated. Using the generalized fluctuating hydrodynamics, correlation functions for both the microscopic scale and the macroscopic scale are obtained. The existence of the long-range correlation functions obeying power laws has been confirmed. The validity of our theoretical predictions have been verified from the molecular dynamics simulation.Comment: 34 pages, 12 figure

    Density fluctuations and single-particle dynamics in liquid lithium

    Full text link
    The single-particle and collective dynamical properties of liquid lithium have been evaluated at several thermodynamic states near the triple point. This is performed within the framework of mode-coupling theory, using a self-consistent scheme which, starting from the known static structure of the liquid, allows the theoretical calculation of several dynamical properties. Special attention is devoted to several aspects of the single-particle dynamics, which are discussed as a function of the thermodynamic state. The results are compared with those of Molecular Dynamics simulations and other theoretical approaches.Comment: 31 pages (in preprint format), 14 figures. Submitted to Phys. Rev.

    Role of structural relaxations and vibrational excitations in the high-frequency dynamics of liquids and glasses

    Full text link
    We present theoretical investigation on the high-frequency collective dynamics in liquids and glasses at microscopic length scales and terahertz frequency region based on the mode-coupling theory for ideal liquid-glass transition. We focus on recently investigated issues from inelastic-X-ray-scattering and computer-simulation studies for dynamic structure factors and longitudinal and transversal current spectra: the anomalous dispersion of the high-frequency sound velocity and the nature of the low-frequency excitation called the boson peak. It will be discussed how the sound mode interferes with other low-lying modes present in the system. Thereby, we provide a systematic explanation of the anomalous sound-velocity dispersion in systems -- ranging from high temperature liquid down to deep inside the glass state -- in terms of the contributions from the structural-relaxation processes and from vibrational excitations called the anomalous-oscillation peak (AOP). A possibility of observing negative dispersion -- the {\em decrease} of the sound velocity upon increase of the wave number -- is argued when the sound-velocity dispersion is dominated by the contribution from the vibrational dynamics. We also show that the low-frequency excitation, observable in both of the glass-state longitudinal and transversal current spectra at the same resonance frequency, is the manifestation of the AOP. As a consequence of the presence of the AOP in the transversal current spectra, it is predicted that the transversal sound velocity also exhibits the anomalous dispersion. These results of the theory are demonstrated for a model of the Lennard-Jones system.Comment: 25 pages, 22 figure

    Fluctuating magnetic moments in liquid metals

    Full text link
    We re-analyze literature data on neutron scattering by liquid metals to show that non-magnetic liquid metals possess a magnetic moment that fluctuates on a picosecond time scale. This time scale follows the motion of the cage-diffusion process in which an ion rattles around in the cage formed by its neighbors. We find that these fluctuating magnetic moments are present in liquid Hg, Al, Ga and Pb, and possibly also in the alkali metals.Comment: 17 pages, 5 figures, submitted to PR
    • …