1,835 research outputs found

    Application of the Trace Formula in Pseudointegrable Systems

    Full text link
    We apply periodic-orbit theory to calculate the integrated density of states N(k)N(k) from the periodic orbits of pseudointegrable polygon and barrier billiards. We show that the results agree so well with the results obtained from direct diagonalization of the Schr\"odinger equation, that about the first 100 eigenvalues can be obtained directly from the periodic-orbit calculations in good accuracy.Comment: 5 Pages, 4 Figures, submitted to Phys. Rev.

    Quantal Consequences of Perturbations Which Destroy Structurally Unstable Orbits in Chaotic Billiards

    Full text link
    Non-generic contributions to the quantal level-density from parallel segments in billiards are investigated. These contributions are due to the existence of marginally stable families of periodic orbits, which are structurally unstable, in the sense that small perturbations, such as a slight tilt of one of the segments, destroy them completely. We investigate the effects of such perturbation on the corresponding quantum spectra, and demonstrate them for the stadium billiard

    Attractive Casimir Forces in a Closed Geometry

    Full text link
    We study the Casimir force acting on a conducting piston with arbitrary cross section. We find the exact solution for a rectangular cross section and the first three terms in the asymptotic expansion for small height to width ratio when the cross section is arbitrary. Though weakened by the presence of the walls, the Casimir force turns out to be always attractive. Claims of repulsive Casimir forces for related configurations, like the cube, are invalidated by cutoff dependence.Comment: An updated version to coincide with the one published December 2005 in PRL. 4 pages, 2 figure

    Density of states of helium droplets

    Full text link
    Accurate analytical expressions for the state densities of liquid He-4 droplets are derived, incorporating the ripplon and phonon degrees of freedom. The microcanonical temperature and the ripplon angular momentum level density are also evaluated. The approach is based on inversions and systematic expansions of canonical thermodynamic properties.Comment: 20 pages, 5 figure

    The Generation of Successive Unmarked Mutations and Chromosomal Insertion of Heterologous Genes in Actinobacillus pleuropneumoniae Using Natural Transformation

    Get PDF
    We have developed a simple method of generating scarless, unmarked mutations in Actinobacillus pleuropneumoniae by exploiting the ability of this bacterium to undergo natural transformation, and with no need to introduce plasmids encoding recombinases or resolvases. This method involves two successive rounds of natural transformation using linear DNA: the first introduces a cassette carrying cat (which allows selection by chloramphenicol) and sacB (which allows counter-selection using sucrose) flanked by sequences to either side of the target gene; the second transformation utilises the flanking sequences ligated directly to each other in order to remove the cat-sacB cassette. In order to ensure efficient uptake of the target DNA during transformation, A. pleuropneumoniae uptake sequences are added into the constructs used in both rounds of transformation. This method can be used to generate multiple successive deletions and can also be used to introduce targeted point mutations or insertions of heterologous genes into the A. pleuropneumoniae chromosome for development of live attenuated vaccine strains. So far, we have applied this method to highly transformable isolates of serovars 8 (MIDG2331), which is the most prevalent in the UK, and 15 (HS143). By screening clinical isolates of other serovars, it should be possible to identify other amenable strains

    Discrete Symmetries in the Weyl Expansion for Quantum Billiards

    Full text link
    We consider two and three-dimensional quantum billiards with discrete symmetries. We derive the first terms of the Weyl expansion for the level density projected onto the irreducible representations of the symmetry group. As an illustration the method is applied to the icosahedral billiard. The paper was published in J. Phys. A /27/ (1994) 4317-4323Comment: 8 printed pages Latex fil

    Chaotic Scattering in the Regime of Weakly Overlapping Resonances

    Full text link
    We measure the transmission and reflection amplitudes of microwaves in a resonator coupled to two antennas at room temperature in the regime of weakly overlapping resonances and in a frequency range of 3 to 16 GHz. Below 10.1 GHz the resonator simulates a chaotic quantum system. The distribution of the elements of the scattering matrix S is not Gaussian. The Fourier coefficients of S are used for a best fit of the autocorrelation function if S to a theoretical expression based on random--matrix theory. We find very good agreement below but not above 10.1 GHz

    Quantum Chaotic Scattering in Microwave Resonators

    Full text link
    In a frequency range where a microwave resonator simulates a chaotic quantum billiard, we have measured moduli and phases of reflection and transmission amplitudes in the regimes of both isolated and of weakly overlapping resonances and for resonators with and without time-reversal invariance. Statistical measures for S-matrix fluctuations were determined from the data and compared with extant and/or newly derived theoretical results obtained from the random-matrix approach to quantum chaotic scattering. The latter contained a small number of fit parameters. The large data sets taken made it possible to test the theoretical expressions with unprecedented accuracy. The theory is confirmed by both, a goodness-of-fit-test and the agreement of predicted values for those statistical measures that were not used for the fits, with the data

    Psychological principles of successful aging technologies: A mini-review

    Get PDF
    Based on resource-oriented conceptions of successful life-span development, we propose three principles for evaluating assistive technology: (a) net resource release; (b) person specificity, and (c) proximal versus distal frames of evaluation. We discuss how these general principles can aid the design and evaluation of assistive technology in adulthood and old age, and propose two technological strategies, one targeting sensorimotor and the other cognitive functioning. The sensorimotor strategy aims at releasing cognitive resources such as attention and working memory by reducing the cognitive demands of sensory or sensorimotor aspects of performance. The cognitive strategy attempts to provide adaptive and individualized cuing structures orienting the individual in time and space by providing prompts that connect properties of the environment to the individual's action goals. We argue that intelligent assistive technology continuously adjusts the balance between `environmental support' and `self-initiated processing' in person-specific and aging-sensitive ways, leading to enhanced allocation of cognitive resources. Furthermore, intelligent assistive technology may foster the generation of formerly latent cognitive resources by activating developmental reserves (plasticity). We conclude that `lifespan technology', if co-constructed by behavioral scientists, engineers, and aging individuals, offers great promise for improving both the transition from middle adulthood to old age and the degree of autonomy in old age in present and future generations. Copyright (C) 2008 S. Karger AG, Basel
    • …
    corecore