1,426 research outputs found

    Role of noncoding RNA in vascular remodelling

    Get PDF
    Purpose of review: Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) are becoming fundamentally important in the pathophysiology relating to injury-induced vascular remodelling. We highlight recent studies that demonstrate the involvement of ncRNAs in vein graft disease, in in-stent restenosis and in pulmonary arterial hypertension, with a particular focus on endothelial cell and vascular smooth muscle cell function. We also briefly discuss the emerging role of exosomal-derived ncRNAs and how this mechanism impacts on vascular function. Recent findings: ncRNAs have been described as novel regulators in the pathophysiology of vascular injury, inflammation, and vessel wall remodelling. In particular, several studies have demonstrated that manipulation of miRNAs can reduce the burden of pathological vascular remodelling. Such studies have also shown that exosomal miRNA-mediated, cell-to-cell communication between endothelial cells and vascular smooth muscle cells is critical in the disease process. In addition to miRNAs, lncRNAs are emerging as regulators of vascular function in health and disease. Although lncRNAs are complex in both their sheer numbers and mechanisms of action, identifying their contribution to vascular disease is essential. Summary: Given the important roles of ncRNAs in vascular injury and remodelling together will their capacity for cell-to-cell communication, manipulating ncRNA might provide novel therapeutic interventions

    Canonical transforming growth factor-β signaling regulates disintegrin metalloprotease expression in experimental renal fibrosis via miR-29

    Get PDF
    Fibrosis pathophysiology is critically regulated by Smad 2– and Smad 3–mediated transforming growth factor-β (TGF-β) signaling. Disintegrin metalloproteases (Adam) can manipulate the signaling environment, however, the role and regulation of ADAMs in renal fibrosis remain unclear. TGF-β stimulation of renal cells results in a significant up-regulation of Adams 10, 17, 12, and 19. The selective Smad2/3 inhibitor SB 525334 reversed these TGF-β–induced changes. In vivo, using ureteral obstruction to model renal fibrosis, we observed increased Adams gene expression that was blocked by oral administration of SB 525334. Similar increases in Adam gene expression also occurred in preclinical models of hypertension-induced renal damage and glomerulonephritis. miRNAs are a recently discovered second level of regulation of gene expression. Analysis of 3′ untranslated regions of Adam12 and Adam19 mRNAs showed multiple binding sites for miR-29a, miR-29b, and miR-29c. We show that miR-29 family expression is decreased after unilateral ureter obstruction and this significant decrease in miR-29 family expression was observed consistently in preclinical models of renal dysfunction and correlated with an increase in Adam12 and Adam19 expression. Exogenous overexpression of the miR-29 family blocked TGF-β–mediated up-regulation of Adam12 and Adam19 gene expression. This study shows that Adams are involved in renal fibrosis and are regulated by canonical TGF-β signaling and miR-29. Therefore, both Adams and the miR-29 family represent therapeutic targets for renal fibrosis

    The role of the endothelium in SARS-CoV-2 infection and pathogenesis

    Get PDF
    Endothelial cell (EC) dysfunction is a characteristic complication of coronavirus-19 (COVID-19). This review discusses the role of the endothelium during the pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with a focus on different vascular beds, possible routes of infectivity and the impact of EC dysfunction across multiple organ systems. It is now known that COVID-19 disease elicits a distinct transcriptomic and molecular profile that is different to other viral infections, such as Influenza A (H1N1). Interestingly, there is also a suggested interplay between the heart and lungs that promotes the amplification of inflammatory cascades, leading to an exacerbation in disease severity. Multiomic studies have informed common pathways that may be responsible for endothelial activation while also highlighting key differences in COVID-19 pathogenesis between organ systems. At a pathological level, endothelialitis is an endpoint result regardless of either a direct viral infection or via indirect effects independent of infection. Understanding if ECs are directly targeted by SARS-CoV-2 or are collaterally damaged amid a cytokine storm originating from other cells and organs can provide novel insights into disease progression and may highlight possible new therapeutic opportunities targeted at the damaged endothelium

    Tissue Inhibitor of Metalloproteinase–3 (TIMP-3) induces FAS dependent apoptosis in human vascular smooth muscle cells

    Get PDF
    Over expression of Tissue Inhibitor of Metalloproteinases-3 (TIMP-3) in vascular smooth muscle cells (VSMCs) induces apoptosis and reduces neointima formation occurring after saphenous vein interposition grafting or coronary stenting. In studies to address the mechanism of TIMP-3-driven apoptosis in human VSMCs we find that TIMP-3 increased activation of caspase-8 and apoptosis was inhibited by expression of Cytokine response modifier A (CrmA) and dominant negative FAS-Associated protein with Death Domain (FADD). TIMP-3 induced apoptosis did not cause mitochondrial depolarisation, increase activation of caspase-9 and was not inhibited by over-expression of B-cell Lymphoma 2 (Bcl2), indicating a mitochondrial independent/type-I death receptor pathway. TIMP-3 increased levels of the First Apoptosis Signal receptor (FAS) and depletion of FAS with shRNA showed TIMP-3-induced apoptosis was FAS dependent. TIMP-3 induced formation of the Death-Inducing Signalling Complex (DISC), as detected by immunoprecipitation and by immunofluorescence. Cellular-FADD-like IL-1 converting enzyme-Like Inhibitory Protein (c-FLIP) localised with FAS at the cell periphery in the absence of TIMP-3 and this localisation was lost on TIMP-3 expression with c-FLIP adopting a perinuclear localisation. Although TIMP-3 inhibited FAS shedding, this did not increase total surface levels of FAS but instead increased FAS levels within localised regions at the cell surface. A Disintegrin And Metalloproteinase 17 (ADAM17) is inhibited by TIMP-3 and depletion of ADAM17 with shRNA significantly decreased FAS shedding. However ADAM17 depletion did not induce apoptosis or replicate the effects of TIMP-3 by increasing localised clustering of cell surface FAS. ADAM17-depleted cells could activate caspase-3 when expressing levels of TIMP-3 that were otherwise sub-apoptotic, suggesting a partial role for ADAM17 mediated ectodomain shedding in TIMP-3 mediated apoptosis. We conclude that TIMP-3 induced apoptosis in VSMCs is highly dependent on FAS and is associated with changes in FAS and c-FLIP localisation, but is not solely dependent on shedding of the FAS ectodomain

    Improved gene delivery to human saphenous vein cells and tissue using a peptide-modified adenoviral vector

    Get PDF
    The establishment of efficient gene delivery to target human tissue is a major obstacle for transition of gene therapy from the pre-clinical phases to the clinic. The poor long-term patency rates for coronary artery bypass grafting (CABG) is a major clinical problem that lacks an effective and proven pharmacological intervention. Late vein graft failure occurs due to neointima formation and accelerated atherosclerosis. Since CABG allows a clinical window of opportunity to genetically modify vein ex vivo prior to grafting it represents an ideal opportunity to develop gene-based therapies. Adenoviral vectors have been frequently used for gene delivery to vein ex vivo and pre-clinical studies have shown effective blockade in neointima development by overexpression of candidate therapeutic genes. However, high titers of adenovirus are required to achieve sufficient gene delivery to provide therapeutic benefit. Improvement in the uptake of adenovirus into the vessel wall would therefore be of benefit. Here we determined the ability of an adenovirus serotype 5 vector genetically-engineered with the RGD-4C integrin targeting peptide inserted into the HI loop (Ad-RGD) to improve the transduction of human saphenous vein smooth muscle cells (HSVSMC), endothelial cells (HSVEC) and intact saphenous vein compared to a non-modified virus (Ad-CTL). We exposed each cell type to virus for 10, 30 or 60 mins and measured transgene at 24 h post infection. For both HSVSMC and HSVEC Ad-RGD mediated increased transduction, with the largest increases observed in HSVSMC. When the experiments were repeated with intact human saphenous vein (the ultimate clinical target for gene therapy), again Ad-RGD mediated higher levels of transduction, at all clinically relevant exposures times (10, 30 and 60 mins tissue:virus exposure). Our study demonstrates the ability of peptide-modified Ad vectors to improve transduction to human vein graft cells and tissue and has important implications for gene therapy for CABG
    • …
    corecore