1,428 research outputs found

    Gas Analysis and Monitoring Systems for the RPC Detector of CMS at LHC

    Get PDF
    The Resistive Plate Chambers (RPC) detector of the CMS experiment at the LHC proton collider (CERN, Switzerland) will employ an online gas analysis and monitoring system of the freon-based gas mixture used. We give an overview of the CMS RPC gas system, describe the project parameters and first results on gas-chromatograph analysis. Finally, we report on preliminary results for a set of monitor RPC.Comment: 9 pages, 8 figures. Presented by Stefano Bianco (Laboratori Nazionali di Frascati dell'INFN) at the IEEE NSS, San Diego (USA), October 200

    The CMS RPC gas gain monitoring system: an overview and preliminary results

    Full text link
    The status of the CMS RPC Gas Gain Monitoring (GGM) system developed at the Frascati Laboratory of INFN (Istituto Nazionale di Fisica Nucleare) is reported on. The GGM system is a cosmic ray telescope based on small RPC detectors operated with the same gas mixture used by the CMS RPC system. The GGM gain and efficiency are continuously monitored on-line, thus providing a fast and accurate determination of any shift in working point conditions. The construction details and the first result of GGM commissioning are described.Comment: 8 pages, 9 figures, uses lnfprepCMS.sty, presented by L. Benussi at RPC07, Mumbai, INDIA 200

    Recent results and developments on double-gap RPCs for CMS

    Get PDF
    Abstract A 3 mm wide-gap Resistive Plate Chamber, as proposed for CMS, has been tested in the H2 Cern beam line. Results on efficiency, rate capability, time resolution and cluster size are reported

    Resistive Plate Chambers in avalanche mode: a comparison between model predictions and experimental results

    Get PDF
    Abstract In this paper a model simulating the main aspects of avalanche growth and signal development in Resistive Plate Chambers (RPCs) is presented. The model has been used to compute the performances, in particular, charge distribution and efficiency of single- double- and multi-gap RPCs, and to compare them with the available experimental results. This model could be used to optimize the characteristics of this type of detector with a view to its use in the future large experiments at LHC: ATLAS and CMS

    The RPC system for the CMS experiment at the LHC

    Get PDF
    The CMS detector at the LHC has a redundant muon system. Two independent muon systems are used in the L1 trigger. One of them is based on wire chambers, the other on RPC detectors. Properly combining the answers of the two systems results in a highly efficient L1 trigger with high flexibility from the point of view of rate control. Simulation results show, however, that the RPC system suffers from false triggers caused by coincidence of spurious hits. System improvements, which could avoid oiling the chambers, are possible. RPCs have also proved to be very useful for muon track reconstruction

    Neutron irradiation of RPCs for the CMS experiment

    Get PDF
    All the CMS muon stations will be equipped with Resistive Plate Chambers (RPCs). They will be exposed to high neutron background environment during the LHC running. In order to verify the safe operation of these detectors, an irradiation test has been carried out with two RPCs at high neutron flux (about ), integrating values of dose and fluence equivalent to 10 LHC-years. Before and after the irradiation, the performance of the detectors was studied with cosmic muons, showing no relevant aging effects. Moreover, no indication of damage or chemical changes were observed on the electrode surfaces

    Experimental results on RPC neutron sensitivity

    Get PDF
    Abstract RPC neutron sensitivity has been studied during two tests done with different neutrons energies. In the first test, neutrons from spontaneous fission events of 252 Cf were used (average energy 2 MeV ); while in the second test neutrons were produced using a 50 MeV deuteron beam on a 1 cm thick beryllium target (average energy 20 MeV ). Preliminary results show that the neutron sensitivity in double gap mode is (0.52¬Ī0.03)√ó10‚ąí3 at about 2 MeV and (5.3¬Ī0.5)√ó10‚ąí3 at about 20 MeV

    Measurements of branching fraction ratios and CP-asymmetries in suppressed B^- -> D(-> K^+ pi^-)K^- and B^- -> D(-> K^+ pi^-)pi^- decays

    Get PDF
    We report the first reconstruction in hadron collisions of the suppressed decays B^- -> D(-> K^+ pi^-)K^- and B^- -> D(-> K^+ pi^-)pi^-, sensitive to the CKM phase gamma, using data from 7 fb^-1 of integrated luminosity collected by the CDF II detector at the Tevatron collider. We reconstruct a signal for the B^- -> D(-> K^+ pi^-)K^- suppressed mode with a significance of 3.2 standard deviations, and measure the ratios of the suppressed to favored branching fractions R(K) = [22.0 \pm 8.6(stat)\pm 2.6(syst)]\times 10^-3, R^+(K) = [42.6\pm 13.7(stat)\pm 2.8(syst)]\times 10^-3, R^-(K)= [3.8\pm 10.3(stat)\pm 2.7(syst]\times 10^-3, as well as the direct CP-violating asymmetry A(K) = -0.82\pm 0.44(stat)\pm 0.09(syst) of this mode. Corresponding quantities for B^- -> D(-> K^+ pi^-)pi^- decay are also reported.Comment: 8 pages, 1 figure, accepted by Phys.Rev.D Rapid Communications for Publicatio
    • ‚Ķ