3,307 research outputs found

    Search for Extra Space-Dimensions at the LHC

    Get PDF
    The introduction of extra space dimensions in the theory could be an elegant way tovsolve the hierarchy problem. There could even be one energy scale at which all interactions could unify. The limits coming from our knowledge of the gravitation at low distance allow this energy scale to be as low as few TeV. This situation is extremely interesting experimentally in the context of the LHC which will cover the range from 100 GeV to few TeV. This article describes the different analyses developed by the LHC experiments to study this new phenomenology.Comment: 7 pages, 6 figure

    Optical characterization of Bi2_2Se3_3 in a magnetic field: infrared evidence for magnetoelectric coupling in a topological insulator material

    Full text link
    We present an infrared magneto-optical study of the highly thermoelectric narrow-gap semiconductor Bi2_2Se3_3. Far-infrared and mid-infrared (IR) reflectance and transmission measurements have been performed in magnetic fields oriented both parallel and perpendicular to the trigonal cc axis of this layered material, and supplemented with UV-visible ellipsometry to obtain the optical conductivity ŌÉ1(ŌČ)\sigma_1(\omega). With lowering of temperature we observe narrowing of the Drude conductivity due to reduced quasiparticle scattering, as well as the increase in the absorption edge due to direct electronic transitions. Magnetic fields H‚ą•cH \parallel c dramatically renormalize and asymmetrically broaden the strongest far-IR optical phonon, indicating interaction of the phonon with the continuum free-carrier spectrum and significant magnetoelectric coupling. For the perpendicular field orientation, electronic absorption is enhanced, and the plasma edge is slightly shifted to higher energies. In both cases the direct transition energy is softened in magnetic field.Comment: Final versio

    Ion-lithium collision dynamics studied with an in-ring MOTReMi

    Get PDF
    We present a novel experimental tool allowing for kinematically complete studies of break-up processes of laser-cooled atoms. This apparatus, the 'MOTReMi', is a combination of a magneto-optical trap (MOT) and a Reaction Microscope (ReMi). Operated in an ion-storage ring, the new setup enables to study the dynamics in swift ion-atom collisions on an unprecedented level of precision and detail. In first experiments on collisions with 1.5 MeV/amu O8+^{8+}-Li the pure ionization of the valence electron as well as ionization-excitation of the lithium target has been investigated

    Probing TeV-scale gauge unification by hadronic collisions

    Full text link
    Grand unified theories (GUTs) and extra dimensions are potential ingredients of the new physics that may resolve various outstanding problems of the Standard Model. If the inverse size of (one of) the extra dimension(s) is smaller than the GUT scale and standard gauge bosons are allowed to propagate in the bulk then, among other consequences, the evolution of the gauge couplings deviates from the usual logarithmic running somewhat below and between these two scales. In this work, we show that if the compactification scale is the order of 10 TeV, then this modified running may be observable at the CERN Large Hadron Collider in the dijet invariant mass distribution. We also demonstrate that dijets are highly sensitive to the renormalization effects of the extra dimensions, and are potential tools for determining the number of dimensions and the value of the compactification scale.Comment: 10 pages, 2 figures, using JHEP styl

    Phonon splitting and anomalous enhancement of infrared-active modes in BaFe2_2As2_2

    Full text link
    We present a comprehensive infrared spectroscopic study of lattice dynamics in the pnictide parent compound BaFe2_2As2_2. In the tetragonal structural phase, we observe the two degenerate symmetry-allowed in-plane infrared active phonon modes. Following the structural transition from the tetragonal to orthorhombic phase, we observe splitting into four non-degenerate phonon modes and a significant phonon strength enhancement. These detailed data allow us to provide a physical explanation for the anomalous phonon strength enhancement as the result of anisotropic conductivity due to Hund's coupling.Comment: 5 pages, 3 figures, 1 tabl

    Influence of normal and radial contributions of local current density on local electrochemical impedance spectroscopy.

    Get PDF
    A new tri-electrode probe is presented and applied to local electrochemical impedance spectroscopy (LEIS) measurements. As opposed to two-probe systems, the three-probe one allows measurement not only of normal, but also of radial contributions of local current densities to the local impedance values. The results concerning the cases of the blocking electrode and the electrode with faradaic reaction are discussed from the theoretical point of view for a disk electrode. Numerical simulations and experimental results are compared for the case of the ferri/ferrocyanide electrode reaction at the Pt working electrode disk. At the centre of the disk, the impedance taking into account both normal and radial contributions was in good agreement with the local impedance measured in terms of only the normal contribution. At the periphery of the electrode, the impedance taking into account both normal and radial contributions differed significantly from the local impedance measured in terms of only the normal contribution. The radial impedance results at the periphery of the electrode are in good agreement with the usual explanation that the associated larger current density is attributed to the geometry of the electrode, which exhibits a greater accessibility at the electrode edge

    Polarization and Interference Effects in Ionization of Li by Ion Impact

    Get PDF
    We present initial-state selective fully differential cross sections for ionization of lithium by 24 MeV O8+ impact. The data for ionization from the 2s and 2p states look qualitatively different from each other and from 1s ionization of He. For ionization from the 2p state, to which in our study the mL=-1 substate predominantly contributes, we observe orientational dichroism and for 2s ionization pronounced interference which we trace back to the nodal structure of the initial-state wave function

    Two-Stage Rotational Disordering of a Molecular Crystal Surface: C60

    Get PDF
    We propose a two-stage mechanism for the rotational surface disordering phase transition of a molecular crystal, as realized in C60_{60} fullerite. Our study, based on Monte Carlo simulations, uncovers the existence of a new intermediate regime, between a low temperature ordered (2√ó2)(2 \times 2) state, and a high temperature (1√ó1)(1 \times 1) disordered phase. In the intermediate regime there is partial disorder, strongest for a subset of particularly frustrated surface molecules. These concepts and calculations provide a coherent understanding of experimental observations, with possible extension to other molecular crystal surfaces.Comment: 4 pages, 2 figure

    Matter-gravity interaction in a multiply warped braneworld,

    Full text link
    The role of a bulk graviton in predicting the signature of extra dimensions through collider-based experiments is explored in the context of a multiply warped spacetime. In particular it is shown that in a doubly warped braneworld model, the presence of the sixth dimension, results in enhanced concentration of graviton Kaluza Klein (KK) modes compared to that obtained in the usual 5-dimensional Randall-Sundrum model. Also, the couplings of these massive graviton KK modes with the matter fields on the visible brane turn out to be appreciably larger than that in the corresponding 5- dimensional model. The significance of these results are discussed in the context of KK graviton search at the Large Hadron Collider (LHC).Comment: 13 pages, 2 table
    • ‚Ķ