1,609 research outputs found

    The Effects of Clumping and Substructure on ICM Mass Measurements

    Get PDF
    We examine an ensemble of 48 simulated clusters to determine the effects of small-scale density fluctuations and large-scale substructure on X-ray measurements of the intracluster medium (ICM) mass. We measure RMS density fluctuations in the ICM which can be characterized by a mean mass-weighted clumping factor C = /^2 between 1.3 and 1.4 within a density contrast of 500 times the critical density. These fluctuations arise from the cluster history of accretion shocks and major mergers, and their presence enhances the cluster's luminosity relative to the smooth case. We expect, therefore, that ICM mass measurements utilizing models which assume uniform density at a given radius carry a bias of order sqrt(C) = 1.16. We verify this result by performing ICM mass measurements on X-ray images of the simulations and finding the expected level of bias. The varied cluster morphologies in our ensemble also allow us to investigate the effects of departures from spherical symmetry on our measurements. We find that the presence of large-scale substructure does not further bias the resulting gas mass unless it is pronounced enough to produce a second peak in the image of at least 1% the maximum surface brightness. We analyze the subset of images with no secondary peaks and find a bias of 9% and a Gaussian random error of 4% in the derived mass.Comment: To appear in ApJ

    Artificial viscosity model to mitigate numerical artefacts at fluid interfaces with surface tension

    Get PDF
    The numerical onset of parasitic and spurious artefacts in the vicinity of uid interfaces with surface tension is an important and well-recognised problem with respect to the accuracy and numerical stability of interfacial ow simulations. Issues of particular interest are spurious capillary waves, which are spatially underresolved by the computational mesh yet impose very restrictive time-step requirements, as well as parasitic currents, typically the result of a numerically unbalanced curvature evaluation. We present an arti cial viscosity model to mitigate numerical artefacts at surface-tension-dominated interfaces without adversely a ecting the accuracy of the physical solution. The proposed methodology computes an additional interfacial shear stress term, including an interface viscosity, based on the local ow data and uid properties that reduces the impact of numerical artefacts and dissipates underresolved small scale interface movements. Furthermore, the presented methodology can be readily applied to model surface shear viscosity, for instance to simulate the dissipative e ect of surface-active substances adsorbed at the interface. The presented analysis of numerical test cases demonstrates the e cacy of the proposed methodology in diminishing the adverse impact of parasitic and spurious interfacial artefacts on the convergence and stability of the numerical solution algorithm as well as on the overall accuracy of the simulation results

    Constraints on \Omega_0 and Cluster Evolution Using the ROSAT LogN-LogS

    Full text link
    We examine the likelihoods of different cosmological models and cluster evolutionary histories by comparing semi-analytical predictions of X-ray cluster number counts to observational data from the ROSAT satellite. We model cluster abundance as a function of mass and redshift using a Press-Schechter distribution, and assume the temperature T(M,z) and bolometric luminosity L_X(M,z) scale as power laws in mass and epoch, in order to construct expected counts as a function of X-ray flux. The L_X-M scaling is fixed using the local luminosity function while the degree of evolution in the X-ray luminosity with redshift L_X \propto (1+z)^s is left open, with s an interesting free parameter which we investigate. We examine open and flat cosmologies with initial, scale-free fluctuation spectra having indices n = 0, -1 and -2. An independent constraint arising from the slope of the luminosity-temperature relation strongly favors the n = -2 spectrum. The expected counts demonstrate a strong dependence on \Omega_0 and s, with lesser dependence on \lambda_0 and n. Comparison with the observed counts reveals a "ridge" of acceptable models in the \Omega_0 - s plane, roughly following the relation s = 6 \Omega_0 and spanning low-density models with a small degree of evolution to \Omega = 1 models with strong evolution. Models with moderate evolution are revealed to have a strong lower limit of \Omega_0 \gtrsim 0.3, and low-evolution models imply that \Omega_0 < 1 at a very high confidence level. We suggest observational tests for breaking the degeneracy along this ridge, and discuss implications for evolutionary histories of the intracluster medium.Comment: MNRAS LaTeX style format, submitted to MNRAS 3/26/97. Thirteen pages, eleven postscript figures. Uses epsf macros to include figure

    Effects of Selection and Covariance on X-ray Scaling Relations of Galaxy Clusters

    Full text link
    We explore how the behavior of galaxy cluster scaling relations are affected by flux-limited selection biases and intrinsic covariance among observable properties. Our models presume log-normal covariance between luminosity (L) and temperature (T) at fixed mass (M), centered on evolving, power-law mean relations as a function of host halo mass. Selection can mimic evolution; the \lm and \lt relations from shallow X-ray flux-limited samples will deviate from mass-limited expectations at nearly all scales while the relations from deep surveys (10^{-14} \cgsflux) become complete, and therefore unbiased, at masses above \sims 2 \times 10^{14} \hinv \msol. We derive expressions for low-order moments of the luminosity distribution at fixed temperature, and show that the slope and scatter of the \lt relation observed in flux-limited samples is sensitive to the assumed \lt correlation coefficient. In addition, \lt covariance affects the redshift behavior of halo counts and mean luminosity in a manner that is nearly degenerate with intrinsic population evolution.Comment: 5pages, 4 Figures, Submitted to MNRA

    Estimation of curvature from volume fractions using parabolic reconstruction on two-dimensional unstructured meshes

    Get PDF
    This paper proposes a method to estimate the curvature of an interface represented implicitly by discrete volume fractions on an unstructured two-dimensional mesh. The method relies on the computation of local parabolic reconstructions of the interface. The parabolic reconstruction of the interface in a given computational cell is obtained by solving a local non-linear minimisation problem, and only requires additional information from two neighbouring cells. This compactness ensures a robust behaviour on poorly-resolved interfaces. The proposed method is proven to be analogous to the height-function method for Cartesian configurations with consistent heights, and can be interpreted as a generalisation of the height-function method to meshes of any type. Tests are conducted on a range of interfaces with known curvature. The method is shown to converge with mesh refinement with the same order of accuracy as the height-function method for all three types of meshes tested, i.e. Cartesian, triangular, and polygonal

    Cosmological Parameters from Observations of Galaxy Clusters

    Full text link
    Studies of galaxy clusters have proved crucial in helping to establish the standard model of cosmology, with a universe dominated by dark matter and dark energy. A theoretical basis that describes clusters as massive, multi-component, quasi-equilibrium systems is growing in its capability to interpret multi-wavelength observations of expanding scope and sensitivity. We review current cosmological results, including contributions to fundamental physics, obtained from observations of galaxy clusters. These results are consistent with and complementary to those from other methods. We highlight several areas of opportunity for the next few years, and emphasize the need for accurate modeling of survey selection and sources of systematic error. Capitalizing on these opportunities will require a multi-wavelength approach and the application of rigorous statistical frameworks, utilizing the combined strengths of observers, simulators and theorists.Comment: 53 pages, 21 figures. To appear in Annual Review of Astronomy & Astrophysic

    Traçabilité dans la filière viande. I. La traçabilité administrative.

    Full text link
    peer reviewedLe secteur de la viande a été secoué ces dernières années par quelques scandales, tels ceux des hormones et de la dioxine, avec pour conséquences une perte de confiance de la part du consommateur et une perturbation du marché de la viande. Pour redresser l’image des produits carnés belges, il est important de pouvoir en déterminer et en garantir l’origine. En Belgique, il existe divers systèmes de traçabilité administrative dont le principal est le système SANITEL qui comprend un système automatisé de traitement de données relatives à l’identification et l’enregistrement des animaux. Au-delà de l’aspect légal et réglementaire, différentes initiatives, visant une amélioration de la qualité, fleurissent : "les labels". Ceux-ci intègrent fréquemment la traçabilité dans leur cahier des charges. La traçabilité administrative n’est pas infaillible, la perte de documents et les fraudes peuvent ternir l’image de celle-ci. C’est pourquoi le système documentaire a été associé aux empreintes génétiques des animaux.

    Four Measures of the Intracluster Medium Temperature and Their Relation to a Cluster's Dynamical State

    Get PDF
    We employ an ensemble of hydrodynamic cluster simulations to create spatially and spectrally resolved images of quality comparable to Chandra's expected performance. Emission from simulation mass elements is represented using the XSPEC mekal program assuming 0.3 solar metallicity, and the resulting spectra are fit with a single-temperature model. Despite significant departures from isothermality in the cluster gas, single-temperature models produce acceptable fits to 20,000 source photon spectra. The spectral fit temperature T_s is generally lower than the mass weighted average temperature T_m due to the influence of soft line emission from cooler gas being accreted as part of the hierarchical clustering process. In a Chandra-like bandpass of 0.5 to 9.5 keV we find a nearly uniform fractional bias of (T_m-T_s)/T_s = 20% with occasional large deviations in smaller clusters. In the more traditional 2.0 to 9.5 keV bandpass, the fractional deviation is scale-dependent and on average follows the relation (T_m-T_s)/T_s = 0.2 log(T_m). This bias results in a spectral mass-temperature relationship with slope about 1.6, intermediate between the virial relation M ~ T_m^{3/2} and the observed relation M_{ICM} ~ T^2. Imaging each cluster in the ensemble at 16 epochs in its evolutionary history, we catalogue merger events with mass ratios exceeding 10% in order to investigate the relationship between spectral temperature and proximity to a major merger event. Clusters that are very cool relative to the mean mass-temperature relationship lie preferentially close to a merger, suggesting a viable observational method to cull a subset of dynamically young clusters from the general population.Comment: 34 pages, including 2 tables and 14 figures (one in color). Compiled using LaTeX 2.09 with graphics package and aaspp4 style. The simulated spectral data files used in this paper are available for public consumption at http://redshift.stanford.edu/bfm
    • …