2,006 research outputs found

    rho_T Production via W_L Z_L Fusion at Hadronic Colliders

    Full text link
    Multiscale technicolor models predict the existence of high mass resonances at hadron colliders. Although the quark fusion process of production dominates, vector boson fusion offers the advantage of allowing forward jet tagging for background suppression. We calculate here the cross section and differential distributions for ρT\rho_T production in the vector boson fusion channel at the LHC.Comment: 9 pages, 6 figures, LaTe

    Prospects for the Search for a Standard Model Higgs Boson in ATLAS using Vector Boson Fusion

    Full text link
    The potential for the discovery of a Standard Model Higgs boson in the mass range m_H < 2 m_Z in the vector boson fusion mode has been studied for the ATLAS experiment at the LHC. The characteristic signatures of additional jets in the forward regions of the detector and of low jet activity in the central region allow for an efficient background rejection. Analyses for the H -> WW and H -> tau tau decay modes have been performed using a realistic simulation of the expected detector performance. The results obtained demonstrate the large discovery potential in the H -> WW decay channel and the sensitivity to Higgs boson decays into tau-pairs in the low-mass region around 120 GeV.Comment: 20 pages, 13 ps figures, uses EPJ style fil

    Les Houches "Physics at TeV Colliders 2005'' beyond the Standard Model working group

    Get PDF
    The work contained herein constitutes a report of the "Beyond the Standard Model'' working group for the Workshop "Physics at TeV Colliders", Les Houches, France, 2-20 May, 2005. We present reviews of current topics as well as original research carried out for the workshop. Supersymmetric and non-supersymmetric models are studied, as well as computational tools designed in order to facilitate their phenomenology

    Constraints on a Massive Dirac Neutrino Model

    Full text link
    We examine constraints on a simple neutrino model in which there are three massless and three massive Dirac neutrinos and in which the left handed neutrinos are linear combinations of doublet and singlet neutrinos. We examine constraints from direct decays into heavy neutrinos, indirect effects on electroweak parameters, and flavor changing processes. We combine these constraints to examine the allowed mass range for the heavy neutrinos of each of the three generations.Comment: latex, 29 pages, 7 figures (not included), MIT-CTP-221