931 research outputs found

    Human Ovarian Tumor Cells Escape γδ T Cell Recognition Partly by Down Regulating Surface Expression of MICA and Limiting Cell Cycle Related Molecules

    Get PDF
    Background: Mechanisms of human Vc2Vd2 T cell-mediated tumor immunity have yet to be fully elucidated. Methods and Findings: At least some tumor cell recognition is mediated by NKG2D-MICA interactions. Herein, by using MTT assay and PI-BrdU co-staining and Western-blot, we show that these Vc2Vd2 T cells can limit the proliferation of ovarian tumor cells by down regulation of apoptosis and cell cycle related molecules in tumor cells. Cell-to-cell contact is critical. cd T cell-resistant, but not susceptible ovarian tumor cells escape cd T cell-mediated immune recognition by up-regulating pErk1/2, thereby decreasing surface MICA levels. Erk1/2 inhibitor pretreatment or incubation prevents this MICA decrease, while up-regulating key cell cycle related molecules such as CDK2, CDK4 and Cyclin D1, as well as apoptosis related molecules making resistant tumor cells now vulnerable to cd T cell-mediated lysis. Conclusion: These findings demonstrate novel effects of cdT cells on ovarian tumor cells

    The measurement and therapeutic implications of circulating tumour cells in breast cancer

    Get PDF
    Circulating tumours cells (CTCs) represent an important biologic link in the spread of breast cancer from primary to metastatic disease. CTCs are strong predictors of prognosis in patients with metastatic breast cancer. Research to date has focused on development of methods with adequate sensitivity and specificity to reproducibly identify these rare events. Future research will focus on the biologic phenotypes of these cells with goals to understand mechanisms of metastasis, to identify novel therapeutic targets, and to monitor response to therapy

    Measurement of exclusive pion pair production in proton–proton collisions at √s=7 TeV with the ATLAS detector

    Get PDF

    Search for resonant WZ production in the fully leptonic final state in proton–proton collisions at √s=13 TeV with the ATLAS detector