4,464 research outputs found

    Effect of vicarious fear learning on children’s heart rate responses and attentional bias for novel animals

    Get PDF
    Research with children has shown that vicarious learning can result in changes to 2 of Lang’s (1968) 3 anxiety response systems: subjective report and behavioral avoidance. The current study extended this research by exploring the effect of vicarious learning on physiological responses (Lang’s final response system) and attentional bias. The study used Askew and Field’s (2007) vicarious learning procedure and demonstrated fear-related increases in children’s cognitive, behavioral, and physiological responses. Cognitive and behavioral changes were retested 1 week and 1 month later, and remained elevated. In addition, a visual search task demonstrated that fear-related vicarious learning creates an attentional bias for novel animals, which is moderated by increases in fear beliefs during learning. The findings demonstrate that vicarious learning leads to lasting changes in all 3 of Lang’s anxiety response systems and is sufficient to create attentional bias to threat in children

    Inhibition of vicariously learned fear in children using positive modeling and prior exposure

    Get PDF
    One of the challenges to conditioning models of fear acquisition is to explain how different individuals can experience similar learning events and only some of them subsequently develop fear. Understanding factors moderating the impact of learning events on fear acquisition is key to understanding the etiology and prevention of fear in childhood. This study investigates these moderators in the context of vicarious (observational) learning. Two experiments tested predictions that the acquisition or inhibition of fear via vicarious learning is driven by associative learning mechanisms similar to direct conditioning. In Experiment 1, 3 groups of children aged 7 to 9 years received 1 of 3 inhibitive information interventions psychoeducation, factual information, or no information (control)—prior to taking part in a vicarious fear learning procedure. In Experiment 2, 3 groups of children aged 7 to 10 years received 1 of 3 observational learning interventions—positive modeling (immunization), observational familiarity (latent inhibition), or no prevention (control)— before vicarious fear learning. Results indicated that observationally delivered manipulations inhibited vicarious fear learning, while preventions presented via written information did not. These findings confirm that vicarious learning shares some of the characteristics of direct conditioning and can explain why not all individuals will develop fear following a vicarious learning event. They also suggest that the modality of inhibitive learning is important and should match the fear learning pathway for increased chances of inhibition. Finally, the results demonstrate that positive modeling is likely to be a particularly effective method for preventing fear-related observational learning in children

    Climate‐driven evolutionary change in reproductive and early‐acting life‐history traits in the perennial grass Festuca ovina

    Get PDF
    Reproductive and early‐acting life‐history traits are likely to be particularly important determinants of plant fitness under a changing climate. There have, however, been few robust tests of the evolution of these traits under chronic climate change in natural ecosystems. Such studies are urgently needed, to evaluate the contribution of evolutionary change to population persistence. Here, we examine climate‐driven evolutionary change in reproductive and early‐acting plant life‐history traits in the long‐lived perennial plant, Festuca ovina. We collected established plants of F. ovina from species‐rich calcareous grassland at the Buxton Climate Change Impacts Laboratory (BCCIL), after 17 years of in situ experimental drought treatment. P1 plants collected from drought‐treated and control (ambient climate) plots at BCCIL were used to create an open‐pollinated F1 progeny array, which was subsequently validated using microsatellite markers to establish a robust bi‐parental pedigree. We measured the timing of germination and seed mass in the F1 progeny, the P1 paternal contribution to F1 offspring (paternal reproductive success), and assessed the effects of flowering time on the mating system. F1 seed with ancestry in drought‐treated plots at BCCIL germinated significantly later than seed derived from individuals from control plots. P1 plants from the drought treatment flowered significantly earlier than those from the control plots in summer 2012, but not in 2013. Male reproductive success was also lower in P1 plants collected from drought plots than those from control plots. Furthermore, our pedigree revealed that mating among parents of the F1 progeny had been assortative with respect to flowering time. Synthesis. Our study shows that chronic drought treatment at Buxton Climate Change Impacts Laboratory has driven rapid evolutionary change in reproductive and early‐acting life‐history traits in Festuca ovina, and suggests that evolutionary differentiation may be reinforced through changes in flowering time that reduce the potential for gene flow
    • 

    corecore