33 research outputs found

    Efficiency of cathodic prevention to control corrosion in seawater mixed concrete

    Get PDF

    Low Power Low Modulation Index Ask Demodulator Design for RFID Applications

    Get PDF
    In the era of the Internet of Things (IoT) there is a tremendous increase in portable wireless devices utilized in our day to day working. One such example is the Radio Frequency Identification tag. The primary challenge in designing passive RFID tags is reliable functionality over extreme temperature and environmental conditions with low power operation. An important component of the RFID tag architecture is the demodulator which is tasked with interpreting the incoming data and extracting the reference clock for the Phase Locked Loop. A novel ASK demodulator architecture that functions across a temperature range of -25? to 125? is designed, analyzed and optimized for the worst and best case semiconductor process variations. The incoming RF frequency is selected as 900MHz based on the EPC GEN2 protocol and the baseband signal is set at 450 KHz with a modulation index of 5%. MOS transistor operation and variability in semiconductor processes is explored and a better understanding of how these concepts effect and shape our design decisions is established. A design objective is setup and steps to achieve these design objectives are presented. The design of the ASK demodulator is completed with the help of the Cadence Virtuoso tool, utilizing the IBM 0.18Āµm (CMOS 7RF) process. In order to test our design we have used the Monte Carlo analysis and all the significant DC parameters of the design have been tested for 10,000 samples owing to the high variability associated with modern semiconductor processes. On the other hand Monte Carlo simulations for the transient simulations have been done for 30 samples in accordance with the Central Limit Theorem. The results of the design are compared with other ASK RFID demodulator designs in the past and a comparison is made by utilizing a Figure of Merit from literature. The design is among the best ASK demodulator designs found in literature. Throughout this effort there is emphasis on MOS transistor operation and variations in semiconductor processes. The design takes all pertinent challenges such as extreme temperature, environment conditions and the reliability of the design. Through this work an attempt is made to try and simplify the work of the reader and expose them to the challenges associated with ASK demodulator design.Electrical Engineerin

    Intellectual Feature Ranking Model with Correlated Feature Set based Malware Detection in Cloud environment using Machine Learning

    Get PDF
    Malware detection for cloud systems has been studied extensively, and many different approaches have been developed and implemented in an effort to stay ahead of this ever-evolving threat. Malware refers to any programme or defect that is designed to duplicate itself or cause damage to the system's hardware or software. These attacks are designed specifically to cause harm to operational systems, but they are invisible to the human eye. One of the most exciting developments in data storage and service delivery today is cloud computing. There are significant benefits to be gained over more conventional protection methods by making use of this fast evolving technology to protect computer-based systems from cyber-related threats. Assets to be secured may reside in any networked computing environment, including but not limited to Cyber Physical Systems (CPS), critical systems, fixed and portable computers, mobile devices, and the Internet of Things (IoT). Malicious software or malware refers to any programme that intentionally compromises a computer system in order to compromise its security, privacy, or availability. A cloud-based intelligent behavior analysis model for malware detection system using feature set is proposed to identify the ever-increasing malware attacks. The suggested system begins by collecting malware samples from several virtual machines, from which unique characteristics can be extracted easily. Then, the malicious and safe samples are separated using the features provided to the learning-based and rule-based detection agents. To generate a relevant feature set for accurate malware detection, this research proposes an Intellectual Feature Ranking Model with Correlated Feature Set (IFR-CFS) model using enhanced logistic regression model for accurate detection of malware in the cloud environment. The proposed model when compared to the traditional feature selection model, performs better in generation of feature set for accurate detection of malware

    Co-Inhibition of Androgen Receptor and PARP as a Novel Treatment Paradigm in Prostate Cancer—Where Are We Now?

    No full text
    Metastatic prostate cancer remains lethal with a 5-year survival rate of about 30%, indicating the need for better treatment options. Novel antiandrogens (NAA)—enzalutamide and abiraterone—have been the mainstay of treatment for advanced disease since 2011. In patients who progress on the first NAA, responses to the second NAA are infrequent (25–30%) and short-lasting (median PFS ~3 months). With the growing adoption of NAA therapy in pre-metastatic castration-resistant settings, finding better treatment options for first-line mCRPC has become an urgent clinical need. The regulatory approval of two PARP inhibitors in 2020—rucaparib and olaparib—has provided the first targeted therapy option for patients harboring defects in selected DNA damage response and repair (DDR) pathway genes. However, a growing body of preclinical and clinical data shows that co-inhibition of AR and PARP induces synthetic lethality and could be a promising therapy for patients without any DDR alterations. In this review article, we will investigate the limitations of NAA monotherapy, the mechanistic rationale for synthetic lethality induced by co-inhibition of AR and PARP, the clinical data that have led to the global development of a number of these AR and PARP combination therapies, and how this may impact patient care in the next 2–10 years

    Advances in the Diagnosis and Management of Congenital Heart Disease in Children

    No full text
    The last five decades have witnessed an inordinate number of advances in the diagnosis and management of congenital heart defects (CHDs), as reviewed elsewhere [...

    A review of avelumab in locally advanced and metastatic bladder cancer

    No full text
    Urothelial carcinoma remains a devastating disease with a poor prognosis. Though immune therapy with Bacillus Calmetteā€“GuĆ©rin (BCG) has been used for localized bladder cancer for years, only immune-checkpoint blockade with antiprogrammed cell-death 1 (anti-PD-1) and antiprogrammed cell-death ligand 1 (anti-PD-L1) inhibitors have demonstrated improvement in survival of patients with metastatic disease. Anti-PD-L1 antibody, avelumab, was recently given United States Food and Drug Administration (FDA) accelerated approval for the treatment of recurrent/metastatic urothelial carcinoma after failure of first-line chemotherapy, marking the fifth immune checkpoint inhibitor to be given FDA approval for the treatment of metastatic urothelial cancer. The following manuscript will review avelumab, its pharmacology, and the clinical experience that has led to its approval, as well as future plans for clinical development of avelumab for the treatment or urothelial cancer

    Co-Inhibition of Androgen Receptor and PARP as a Novel Treatment Paradigm in Prostate Cancerā€”Where Are We Now?

    No full text
    Metastatic prostate cancer remains lethal with a 5-year survival rate of about 30%, indicating the need for better treatment options. Novel antiandrogens (NAA)ā€”enzalutamide and abirateroneā€”have been the mainstay of treatment for advanced disease since 2011. In patients who progress on the first NAA, responses to the second NAA are infrequent (25ā€“30%) and short-lasting (median PFS ~3 months). With the growing adoption of NAA therapy in pre-metastatic castration-resistant settings, finding better treatment options for first-line mCRPC has become an urgent clinical need. The regulatory approval of two PARP inhibitors in 2020ā€”rucaparib and olaparibā€”has provided the first targeted therapy option for patients harboring defects in selected DNA damage response and repair (DDR) pathway genes. However, a growing body of preclinical and clinical data shows that co-inhibition of AR and PARP induces synthetic lethality and could be a promising therapy for patients without any DDR alterations. In this review article, we will investigate the limitations of NAA monotherapy, the mechanistic rationale for synthetic lethality induced by co-inhibition of AR and PARP, the clinical data that have led to the global development of a number of these AR and PARP combination therapies, and how this may impact patient care in the next 2ā€“10 years
    corecore