40,740 research outputs found

    The Marianas Covenant Negotiations

    Get PDF
    In September 1969, the United States and the Congress of Micronesia\u27s Joint Committee on Future Status began their negotiations. This article will examine the negotiations which commenced in December 1972 and will concentrate on the three areas which were central points of discussion: the political relationships between the United States and the Northern Marianas; issues of economic development and assistance; and problems of land policy

    The Marianas Covenant Negotiations

    Get PDF
    In September 1969, the United States and the Congress of Micronesia\u27s Joint Committee on Future Status began their negotiations. This article will examine the negotiations which commenced in December 1972 and will concentrate on the three areas which were central points of discussion: the political relationships between the United States and the Northern Marianas; issues of economic development and assistance; and problems of land policy

    Infrared detectors - Special interest bibliography with abstracts

    Get PDF
    Bibliography and abstracts of literature related to infrared detectors used in geoscience researc

    A C35 Carotenoid Biosynthetic Pathway

    Get PDF
    Upon coexpression with Erwinia geranylgeranyldiphosphate (GGDP) synthase in Escherichia coli, C30 carotenoid synthase CrtM from Staphylococcus aureus produces novel carotenoids with the asymmetrical C35 backbone. The products of condensation of farnesyldiphosphate and GDP, C35 structures comprise 40 to 60% of total carotenoid accumulated. Carotene desaturases and carotene cyclases from C40 or C30 pathways accepted and converted the C35 substrate, thus creating a C35 carotenoid biosynthetic pathway in E. coli. Directed evolution to modulate desaturase step number, together with combinatorial expression of the desaturase variants with lycopene cyclases, allowed us to produce at least 10 compounds not previously described. This result highlights the plastic and expansible nature of carotenoid pathways and illustrates how combinatorial biosynthesis coupled with directed evolution can rapidly access diverse chemical structures

    Directed evolution converts subtilisin E into a functional equivalent of thermitase

    Get PDF
    We used directed evolution to convert Bacillus subtilis subtilisin E into an enzyme functionally equivalent to its thermophilic homolog thermitase from Thermoactinomyces vulgaris. Five generations of random mutagenesis, recombination and screening created subtilisin E 5-3H5, whose half-life at 83°C (3.5 min) and temperature optimum for activity (Topt, 76°C) are identical with those of thermitase. The Topt of the evolved enzyme is 17°C higher and its half-life at 65°C is >200 times that of wild-type subtilisin E. In addition, 5-3H5 is more active towards the hydrolysis of succinyl-Ala-Ala-Pro-Phe-p-nitroanilide than wild-type at all temperatures from 10 to 90°C. Thermitase differs from subtilisin E at 157 amino acid positions. However, only eight amino acid substitutions were sufficient to convert subtilisin E into an enzyme equally thermostable. The eight substitutions, which include known stabilizing mutations (N218S, N76D) and also several not previously reported, are distributed over the surface of the enzyme. Only two (N218S, N181D) are found in thermitase. Directed evolution provides a powerful tool to unveil mechanisms of thermal adaptation and is an effective and efficient approach to increasing thermostability without compromising enzyme activity

    A Modified "Bottom-up" Thermalization in Heavy Ion Collisions

    Full text link
    In the initial stage of the bottom-up picture of thermalization in heavy ion collisions, the gluon distribution is highly anisotropic which can give rise to plasma instability. This has not been taken account in the original paper. It is shown that in the presence of instability there are scaling solutions, which depend on one parameter, that match smoothly onto the late stage of bottom-up when thermalization takes place.Comment: 8 pages and 1 embedded figure, talk presented at the Workshop on "Quark-Gluon Plasma Thermalization", Vienna, Austria, 10-12 August 200

    Directed enzyme evolution: climbing fitness peaks one amino acid at a time

    Get PDF
    Directed evolution can generate a remarkable range of new enzyme properties. Alternate substrate specificities and reaction selectivities are readily accessible in enzymes from families that are naturally functionally diverse. Activities on new substrates can be obtained by improving variants with broadened specificities or by step-wise evolution through a sequence of more and more challenging substrates. Evolution of highly specific enzymes has been demonstrated, even with positive selection alone. It is apparent that many solutions exist for any given problem, and there are often many paths that lead uphill, one step at a time

    Catalysts on Demand: Selective Oxidations by Laboratory-Evolved Cytochrome P450 BM3

    Get PDF
    Efficient catalysts for selective oxidation of C-H bonds using atmospheric oxygen are highly desirable to decrease the economic and environmental costs associated with conventional oxidation processes. We have used methods of directed evolution to generate variants of bacterial cytochrome P450 BM3 that catalyze hydroxylation and epoxidation of a wide range of nonnative substrates. This fatty acid hydroxylase was converted to a propane monooxygenase (PMO) capable of hydroxylating propane at rates comparable to that of BM3 on its natural substrates. Variants along the PMO evolutionary lineage showed broadened substrate scope; these became the starting points for evolution of a wide array of enzymes that can hydroxylate and derivatize organic scaffolds. This work demonstrates how a single member of enzyme family is readily converted by evolution into a whole family of catalysts for organic synthesis

    Implications of Rewiring Bacterial Quorum Sensing

    Get PDF
    Bacteria employ quorum sensing, a form of cell-cell communication, to sense changes in population density and regulate gene expression accordingly. This work investigated the rewiring of one quorum-sensing module, the lux circuit from the marine bacterium Vibrio fischeri. Steady-state experiments demonstrate that rewiring the network architecture of this module can yield graded, threshold, and bistable gene expression as predicted by a mathematical model. The experiments also show that the native lux operon is most consistent with a threshold, as opposed to a bistable, response. Each of the rewired networks yielded functional population sensors at biologically relevant conditions, suggesting that this operon is particularly robust. These findings (i) permit prediction of the behaviors of quorum-sensing operons in bacterial pathogens and (ii) facilitate forward engineering of synthetic gene circuits
    corecore