4 research outputs found

    Structural Dynamics of Overcrowded Alkene-Based Molecular Motors during Thermal Isomerization

    No full text
    Synthetic light-driven rotary molecular motors show complicated structural dynamics during the rotation process. A combination of DFT calculations and various spectroscopic techniques is employed to study the effect of the bridging group in the lower half of the molecule on the conformational dynamics. It was found that the extent to which the bridging group can accommodate the increased folding in the transition state is the main factor in rationalizing the differences in barrier height and, as a consequence, the rotary speed. These findings will be essential in designing future rotary molecular motors

    Driving Unidirectional Molecular Rotary Motors with Visible Light by Intra- And Intermolecular Energy Transfer from Palladium Porphyrin

    No full text
    Driving molecular rotary motors using visible light (530–550 nm) instead of UV light was achieved using palladium tetraphenylporphyrin as a triplet sensitizer. Visible light driven rotation was confirmed by UV/vis absorption, circular dichroism and <sup>1</sup>H NMR spectroscopy and the rotation was confirmed to be unidirectional and with similar photostationary states, despite proceeding via a triplet instead of a singlet excited state of the molecular motor. Energy transfer proceeds in both inter- and intramolecular fashion from the triplet state of the porphyrin to the motor. Stern Volmer plots show that the rate of intermolecular quenching of the porphyrin excited state by the molecular motor is diffusion-controlled

    Electronic Delocalization in the Radical Cations of Porphyrin Oligomer Molecular Wires

    No full text
    The radical cations of a family of π-conjugated porphyrin arrays have been investigated: linear chains of <i>N</i> = 1–6 porphyrins, a 6-porphyrin nanoring and a 12-porphyrin nanotube. The radical cations were generated in solution by chemical and electrochemical oxidation, and probed by vis–NIR–IR and EPR spectroscopies. The cations exhibit strong NIR bands at ∼1000 nm and 2000–5000 nm, which shift to longer wavelength with increasing oligomer length. Analysis of the NIR and IR spectra indicates that the polaron is delocalized over 2–3 porphyrin units in the linear oligomers. Some of the IR vibrational bands are strongly intensified on oxidation, and Fano-type antiresonances are observed when activated vibrations overlap with electronic transitions. The solution-phase EPR spectra of the radical cations have Gaussian lineshapes with linewidths proportional to <i>N</i><sup>–0.5</sup>, demonstrating that at room temperature the spin hops rapidly over the whole chain on the time scale of the hyperfine coupling (ca. 100 ns). Direct measurement of the hyperfine couplings through electron–nuclear double resonance (ENDOR) in frozen solution (80 K) indicates distribution of the spin over 2–3 porphyrin units for all the oligomers, except the 12-porphyrin nanotube, in which the spin is spread over about 4–6 porphyrins. These experimental studies of linear and cyclic cations give a consistent picture, which is supported by DFT calculations and multiparabolic modeling with a reorganization energy of 1400–2000 cm<sup>–1</sup> and coupling of 2000 cm<sup>–1</sup> for charge transfer between neighboring sites, placing the system in the Robin–Day class III

    Electronic Delocalization in the Radical Cations of Porphyrin Oligomer Molecular Wires

    No full text
    The radical cations of a family of π-conjugated porphyrin arrays have been investigated: linear chains of <i>N</i> = 1–6 porphyrins, a 6-porphyrin nanoring and a 12-porphyrin nanotube. The radical cations were generated in solution by chemical and electrochemical oxidation, and probed by vis–NIR–IR and EPR spectroscopies. The cations exhibit strong NIR bands at ∼1000 nm and 2000–5000 nm, which shift to longer wavelength with increasing oligomer length. Analysis of the NIR and IR spectra indicates that the polaron is delocalized over 2–3 porphyrin units in the linear oligomers. Some of the IR vibrational bands are strongly intensified on oxidation, and Fano-type antiresonances are observed when activated vibrations overlap with electronic transitions. The solution-phase EPR spectra of the radical cations have Gaussian lineshapes with linewidths proportional to <i>N</i><sup>–0.5</sup>, demonstrating that at room temperature the spin hops rapidly over the whole chain on the time scale of the hyperfine coupling (ca. 100 ns). Direct measurement of the hyperfine couplings through electron–nuclear double resonance (ENDOR) in frozen solution (80 K) indicates distribution of the spin over 2–3 porphyrin units for all the oligomers, except the 12-porphyrin nanotube, in which the spin is spread over about 4–6 porphyrins. These experimental studies of linear and cyclic cations give a consistent picture, which is supported by DFT calculations and multiparabolic modeling with a reorganization energy of 1400–2000 cm<sup>–1</sup> and coupling of 2000 cm<sup>–1</sup> for charge transfer between neighboring sites, placing the system in the Robin–Day class III
    corecore