108 research outputs found

    SMAUG v1.0 ÔÇô a user-friendly muon simulator for the imaging of geological objects in 3-D

    Get PDF
    Knowledge about muon tomography has spread in recent years in the geoscientific community and several collaborations between geologists and physicists have been founded. As the data analysis is still mostly done by particle physicists, much of the know-how is concentrated in particle physics and specialised geophysics institutes. SMAUG (Sim- ulation for Muons and their Applications UnderGround), a toolbox consisting of several modules that cover the various aspects of data analysis in a muon tomographic experiment, aims at providing access to a structured data analysis frame- work. The goal of this contribution is to make muon tomog- raphy more accessible to a broader geoscientific audience. In this study, we show how a comprehensive geophysical model can be built from basic physics equations. The emerging un- certainties are dealt with by a probabilistic formulation of the inverse problem, which is finally solved by a Monte Carlo Markov chain algorithm. Finally, we benchmark the SMAUG results against those of a recent study, which, however, have been established with an approach that is not easily accessi- ble to the geoscientific community. We show that they reach identical results with the same level of accuracy and preci- sion

    The OPERA experiment

    Get PDF
    The OPERA experiment was designed to study oscillations in appearance mode using the CERN to Gran Sasso high energy neutrino beam. From 2008 to 2012, 19505 CNGS neutrino interactions were recorded in the OPERA detector. At the present status of the analysis, 4 candidate events have been observed, establishing the oscillation mechanism in the atmospheric sector with a significance of 4.2 ¤â. The oscillation analysis will be presented in detail and the candidate events will be described. The final measurement of the atmospheric muon charge ratio in the TeV region will be also reported

    Particle tracking at cryogenic temperatures: the Fast Annihilation Cryogenic Tracking (FACT) detector for the AEgIS antimatter gravity experiment

    Get PDF
    The AEgIS experiment is an interdisciplinary collaboration between atomic, plasma and particle physicists, with the scientific goal of performing the first precision measurement of the Earth's gravitational acceleration on antimatter. The principle of the experiment is as follows: cold antihydrogen atoms are synthesized in a Penning-Malmberg trap and are Stark accelerated towards a moir├ę deflectometer, the classical counterpart of an atom interferometer, and annihilate on a position sensitive detector. Crucial to the success of the experiment is an antihydrogen detector that will be used to demonstrate the production of antihydrogen and also to measure the temperature of the anti-atoms and the creation of a beam. The operating requirements for the detector are very challenging: it must operate at close to 4 K inside a 1 T solenoid magnetic field and identify the annihilation of the antihydrogen atoms that are produced during the 1 ╬╝s period of antihydrogen production. Our solutionÔÇöcalled the FACT detectorÔÇöis based on a novel multi-layer scintillating fiber tracker with SiPM readout and off the shelf FPGA based readout system. This talk will present the design of the FACT detector and detail the operation of the detector in the context of the AEgIS experiment

    The mass-hierarchy and CP-violation discovery reach of the LBNO long-baseline neutrino experiment

    Get PDF
    The next generation neutrino observatory proposed by the LBNO collaboration will address fundamental questions in particle and astroparticle physics. The experiment consists of a far detector, in its first stage a 20 kt LAr double phase TPC and a magnetised iron calorimeter, situated at 2300 km from CERN and a near detector based on a highpressure argon gas TPC. The long baseline provides a unique opportunity to study neutrino flavour oscillations over their 1st and 2nd oscillation maxima exploring the L/E behaviour, and distinguishing effects arising from ╬┤CP and matter. In this paper we have reevaluated the physics potential of this setup for determining the mass hierarchy (MH) and discovering CP-violation (CPV), using a conventional neutrino beam from the CERN SPS with a power of 750 kW. We use conservative assumptions on the knowledge of oscillation parameter priors and systematic uncertainties. The impact of each systematic error and the precision of oscillation prior is shown. We demonstrate that the first stage of LBNO can determine unambiguously the MH to > 5╬┤ C.L. over the whole phase space. We show that the statistical treatment of the experiment is of very high importance, resulting in the conclusion that LBNO has ~ 100% probability to determine the MH in at most 4-5 years of running. Since the knowledge of MH is indispensable to extract ╬┤CP from the data, the first LBNO phase can convincingly give evidence for CPV on the 3╬┤ C.L. using todayÔÇÖs knowledge on oscillation parameters and realistic assumptions on the systematic uncertainties

    Positron bunching and electrostatic transport system for the production and emission of dense positronium clouds into vacuum

    Get PDF
    We describe a system designed to re-bunch positron pulses delivered by an accumulator supplied by a positron source and a Surko-trap. Positron pulses from the accumulator are magnetically guided in a 0.085 T field and are injected into a region free of magnetic fields through a ╬╝ -metal field terminator. Here positrons are temporally compressed, electrostatically guided and accelerated towards a porous silicon target for the production and emission of positronium into vacuum. Positrons are focused in a spot of less than 4 mm FWTM in bunches of Ôł╝8 ns FWHM. Emission of positronium into the vacuum is shown by single shot positron annihilation lifetime spectroscopy

    Letter of Intent for FASER: ForwArd Search ExpeRiment at the LHC

    Full text link
    FASER is a proposed small and inexpensive experiment designed to search for light, weakly-interacting particles at the LHC. Such particles are dominantly produced along the beam collision axis and may be long-lived, traveling hundreds of meters before decaying. To exploit both of these properties, FASER is to be located along the beam collision axis, 480 m downstream from the ATLAS interaction point, in the unused service tunnel TI18. We propose that FASER be installed in TI18 in Long Shutdown 2 in time to collect data from 2021-23 during Run 3 of the 14 TeV LHC. FASER will detect new particles that decay within a cylindrical volume with radius R= 10 cm and length L = 1.5 m. With these small dimensions, FASER will complement the LHC's existing physics program, extending its discovery potential to a host of new particles, including dark photons, axion-like particles, and other CP-odd scalars. A FLUKA simulation and analytical estimates have confirmed that numerous potential backgrounds are highly suppressed at the FASER location, and the first in situ measurements are currently underway. We describe FASER's location and discovery potential, its target signals and backgrounds, the detector's layout and components, and the experiment's preliminary cost estimate, funding, and timeline.Comment: 23 pages, 13 figures; submitted to the CERN LHCC on 18 July 201

    FASER: ForwArd Search ExpeRiment at the LHC

    Full text link
    FASER, the ForwArd Search ExpeRiment, is a proposed experiment dedicated to searching for light, extremely weakly-interacting particles at the LHC. Such particles may be produced in the LHC's high-energy collisions in large numbers in the far-forward region and then travel long distances through concrete and rock without interacting. They may then decay to visible particles in FASER, which is placed 480 m downstream of the ATLAS interaction point. In this work, we describe the FASER program. In its first stage, FASER is an extremely compact and inexpensive detector, sensitive to decays in a cylindrical region of radius R = 10 cm and length L = 1.5 m. FASER is planned to be constructed and installed in Long Shutdown 2 and will collect data during Run 3 of the 14 TeV LHC from 2021-23. If FASER is successful, FASER 2, a much larger successor with roughly R ~ 1 m and L ~ 5 m, could be constructed in Long Shutdown 3 and collect data during the HL-LHC era from 2026-35. FASER and FASER 2 have the potential to discover dark photons, dark Higgs bosons, heavy neutral leptons, axion-like particles, and many other long-lived particles, as well as provide new information about neutrinos, with potentially far-ranging implications for particle physics and cosmology. We describe the current status, anticipated challenges, and discovery prospects of the FASER program.Comment: 13 pages, 4 figures, submitted as Input to the European Particle Physics Strategy Update 2018-2020 and draws on FASER's Letter of Intent, Technical Proposal, and physics case documents (arXiv:1811.10243, arXiv:1812.09139, and arXiv:1811.12522

    Technical Proposal for FASER: ForwArd Search ExpeRiment at the LHC

    Full text link
    FASER is a proposed small and inexpensive experiment designed to search for light, weakly-interacting particles during Run 3 of the LHC from 2021-23. Such particles may be produced in large numbers along the beam collision axis, travel for hundreds of meters without interacting, and then decay to standard model particles. To search for such events, FASER will be located 480 m downstream of the ATLAS IP in the unused service tunnel TI12 and be sensitive to particles that decay in a cylindrical volume with radius R=10 cm and length L=1.5 m. FASER will complement the LHC's existing physics program, extending its discovery potential to a host of new, light particles, with potentially far-reaching implications for particle physics and cosmology. This document describes the technical details of the FASER detector components: the magnets, the tracker, the scintillator system, and the calorimeter, as well as the trigger and readout system. The preparatory work that is needed to install and operate the detector, including civil engineering, transport, and integration with various services is also presented. The information presented includes preliminary cost estimates for the detector components and the infrastructure work, as well as a timeline for the design, construction, and installation of the experiment.Comment: 82 pages, 62 figures; submitted to the CERN LHCC on 7 November 201
    • ÔÇŽ