10,715 research outputs found

    Reactions induced by 9^9Be in a four-body continuum-discretized coupled-channels framework

    Full text link
    We investigate the elastic scattering of 9^9Be on 208^{208}Pb at beam energies above (50 MeV) and below (40 MeV) the Coulomb barrier. The reaction is described within a four-body framework using the Continuum-Discretized Coupled-Channels (CDCC) method. The 9^9Be projectile states are generated using the analytical Transformed Harmonic Oscillator (THO) basis in hyperspherical coordinates. Our calculations confirm the importance of continuum effects at low energies.Comment: 2 pages, 1 figure. Proceedings of the International Scientific Meeting on Nuclear Physics, RABIDA15, La R\'abida (Spain), June 1-5, 201

    Analytical transformed harmonic oscillator basis for three-body nuclei of astrophysical interest: Application to 6He

    Get PDF
    Recently, a square-integrable discrete basis, obtained performing a simple analytical local scale transformation to the harmonic oscillator basis, has been proposed and successfully applied to study the properties of two-body systems. Here, the method is generalized to study three-body systems. To test the goodness of the formalism and establish its applicability and limitations, the capture reaction rate for the nucleosynthesis of the Borromean nucleus 6He (4He + n + n) is addressed. Results are compared with previous publications and with calculations based on actual three-body continuum wave functions, which can be generated for this simple case. The obtained results encourage the application to other Borromean nuclei of astrophysical interest such as 9Be and 12C, for which actual three-body continuum calculations are very involved.Comment: Accepted in Phys. Rev.

    Circumstellar rings, flat and flaring discs

    Full text link
    Emission lines formed in the circumstellar envelopes of several type of stars can be modeled using first principles of line formation. We present simple ways of calculating line emission profiles formed in circumstellar envelopes having different geometrical configurations. The fit of the observed line profiles with the calculated ones may give first order estimates of the physical parameters characterizing the line formation regions: opacity, size, particle density distribution, velocity fields, excitation temperature.Comment: 3 pages ; to appear in the proceedings of the Sapporo meeting on active OB stars ; ASP Conference Series ; eds: S. Stefl, S. Owocki and A. Okazak

    Disentangling phase transitions and critical points in the proton-neutron interacting boson model by catastrophe theory

    Get PDF
    We introduce the basic concepts of catastrophe theory needed to derive analytically the phase diagram of the proton-neutron interacting boson model (IBM-2). Previous studies [1,2,3] were based on numerical solutions. We here explain the whole IBM-2 phase diagram including the precise order of the phase transitions in terms of the cusp catastrophe.Comment: To be published in Physics Letters

    A Comment on "Brans-Dicke Cosmology with a scalar field potential"

    Full text link
    We show that a recent letter claiming to present exact cosmological solutions in Brans-Dicke theory actually uses a flawed set of equations as the starting point for their analysis. The results presented in the letter are therefore not valid.Comment: 2 pages, no figures. To appear in Europhysics Letter

    Integrability and Quantum Phase Transitions in Interacting Boson Models

    Full text link
    The exact solution of the boson pairing hamiltonian given by Richardson in the sixties is used to study the phenomena of level crossings and quantum phase transitions in the integrable regions of the sd and sdg interacting boson models.Comment: 5 pages, 5 fig. Erice Conferenc

    Excited-state quantum phase transitions in a two-fluid Lipkin model

    Get PDF
    Background: Composed systems have became of great interest in the framework of the ground state quantum phase transitions (QPTs) and many of their properties have been studied in detail. However, in these systems the study of the so called excited-state quantum phase transitions (ESQPTs) have not received so much attention. Purpose: A quantum analysis of the ESQPTs in the two-fluid Lipkin model is presented in this work. The study is performed through the Hamiltonian diagonalization for selected values of the control parameters in order to cover the most interesting regions of the system phase diagram. [Method:] A Hamiltonian that resembles the consistent-Q Hamiltonian of the interacting boson model (IBM) is diagonalized for selected values of the parameters and properties such as the density of states, the Peres lattices, the nearest-neighbor spacing distribution, and the participation ratio are analyzed. Results: An overview of the spectrum of the two-fluid Lipkin model for selected positions in the phase diagram has been obtained. The location of the excited-state quantum phase transition can be easily singled out with the Peres lattice, with the nearest-neighbor spacing distribution, with Poincar\'e sections or with the participation ratio. Conclusions: This study completes the analysis of QPTs for the two-fluid Lipkin model, extending the previous study to excited states. The ESQPT signatures in composed systems behave in the same way as in single ones, although the evidences of their presence can be sometimes blurred. The Peres lattice turns out to be a convenient tool to look into the position of the ESQPT and to define the concept of phase in the excited states realm

    Radiative capture reaction for 17^{17}Ne formation within a full three-body model

    Get PDF
    Background: The breakout from the hot Carbon-Nitrogen-Oxigen (CNO) cycles can trigger the rp-process in type I x-ray bursts. In this environment, a competition between 15O(őĪ,ő≥)19Ne^{15}\text{O}(\alpha,\gamma){^{19}\text{Ne}} and the two-proton capture reaction 15O(2p,ő≥)17Ne^{15}\text{O}(2p,\gamma){^{17}\text{Ne}} is expected. Purpose: Determine the three-body radiative capture reaction rate for 17Ne{^{17}\text{Ne}} formation including sequential and direct, resonant and non-resonant contributions on an equal footing. Method: Two different discretization methods have been applied to generate 17^{17}Ne states in a full three-body model: the analytical transformed harmonic oscillator method and the hyperspherical adiabatic expansion method. The binary pp--15^{15}O interaction has been adjusted to reproduce the known spectrum of the unbound 16^{16}F nucleus. The dominant E1E1 contributions to the 15O(2p,ő≥)17Ne^{15}\text{O}(2p,\gamma){^{17}\text{Ne}} reaction rate have been calculated from the inverse photodissociation process. Results: Three-body calculations provide a reliable description of 17^{17}Ne states. The agreement with the available experimental data on 17^{17}Ne is discussed. It is shown that the 15O(2p,ő≥)17Ne^{15}\text{O}(2p,\gamma){^{17}\text{Ne}} reaction rates computed within the two methods agree in a broad range of temperatures. The present calculations are compared with a previous theoretical estimation of the reaction rate. Conclusions: It is found that the full three-body model provides a reaction rate several orders of magnitude larger than the only previous estimation. The implications for the rp-process in type I x-ray bursts should be investigated.Comment: 10 pages, 10 figures. Corrected versio
    • ‚Ķ
    corecore