4,425 research outputs found

    Detecting Neutrino Magnetic Moments with Conducting Loops

    Full text link
    It is well established that neutrinos have mass, yet it is very difficult to measure those masses directly. Within the standard model of particle physics, neutrinos will have an intrinsic magnetic moment proportional to their mass. We examine the possibility of detecting the magnetic moment using a conducting loop. According to Faraday's Law of Induction, a magnetic dipole passing through a conducting loop induces an electromotive force, or EMF, in the loop. We compute this EMF for neutrinos in several cases, based on a fully covariant formulation of the problem. We discuss prospects for a real experiment, as well as the possibility to test the relativistic formulation of intrinsic magnetic moments.Comment: 6 pages, 4 b/w figures, uses RevTe

    Gamma Factory high-intensity muon and positron source -- exploratory studies

    Get PDF
    One of the fundamental challenges for the future leptonic colliders and neutrino factories as well as for the high-sensitivity studies of lepton universality is to design and construct new high-intensity sources of muons and positrons. The next-generation sources should increase the intensity of the presently operating ones by at least three orders of the magnitude and include an important option of producing longitudinally polarised leptons. The main effort to achieve this goal has been focused, so far, on the proton-beam-driven muon sources and electron-beam-driven positron sources. In this paper, we present exploratory studies of an alternative scheme which is based on high-intensity megawatt-class photon beams. Such beams could be delivered in the future by the Gamma Factory (GF) project. One of the GF multiple goals is to increase the energy range (by more than one order of magnitude) and the intensity (by more than six orders of magnitude) of the presently operating photon sources. Such a leap can be achieved by extending the present hadron-collider modus operandi of the LHC with the new GF-operation-mode, allowing to collide atomic beams with laser pulses. The exploratory studies presented in this paper demonstrate that more than 1013^{13} muons of both signs and more than 1016^{16} electrons/positrons per second can be produced by the GF source

    Coherent Pair Production by Photons in the 20-170 GeV Energy Range Incident on Crystals and Birefringence

    Get PDF
    The cross section for coherent pair production by linearly polarised photons in the 20-170 GeV energy range was measured for photon aligned incidence on ultra-high quality diamond and germanium crystals. The theoretical description of coherent bremsstrahlung and coherent pair production phenomena is an area of active theoretical debate and development. However, under our experimental conditions, the theory predicted the combined cross section and polarisation experimental observables very well indeed. In macroscopic terms, our experiment measured a birefringence effect in pair production in a crystal. This study of this effect also constituted a measurement of the energy dependent linear polarisation of photons produced by coherent bremsstrahlung in aligned crystals. New technologies for manipulating high energy photon beams can be realised based on an improved understanding of QED phenomena at these energies. In particular, this experiment demonstrates an efficient new polarimetry technique. The pair production measurements were done using two independent methods simultaneously. The more complex method using a magnet spectrometer showed that the simpler method using a multiplicity detector was also viable.Comment: 10 pages, 13 figures, 1 table, REVTeX4 two column, Version for publicatio

    Linear to Circular Polarisation Conversion using Birefringent Properties of Aligned Crystals for Multi-GeV Photons

    Get PDF
    We present the first experimental results on the use of a thick aligned Si crystal acting as a quarter wave plate to induce a degree of circular polarisation in a high energy linearly polarised photon beam. The linearly polarised photon beam is produced from coherent bremsstrahlung radiation by 178 GeV unpolarised electrons incident on an aligned Si crystal, acting as a radiator. The linear polarisation of the photon beam is characterised by measuring the asymmetry in electron-positron pair production in a Ge crystal, for different crystal orientations. The Ge crystal therefore acts as an analyser. The birefringence phenomenon, which converts the linear polarisation to circular polarisation, is observed by letting the linearly polarised photons beam pass through a thick Si quarter wave plate crystal, and then measuring the asymmetry in electron-positron pair production again for a selection of relative angles between the crystallographic planes of the radiator, analyser and quarter wave plate. The systematics of the difference between the measured asymmetries with and without the quarter wave plate are predicted by theory to reveal an evolution in the Stokes parameters from which the appearance of a circularly polarised component in the photon beam can be demonstrated. The measured magnitude of the circularly polarised component was consistent with the theoretical predictions, and therefore is in indication of the existence of the birefringence effect.Comment: 12 pages, 12 figures, 1 table, REVTeX4 two column, Version for publicatio

    Results on the Coherent Interaction of High Energy Electrons and Photons in Oriented Single Crystals

    Full text link
    The CERN-NA-59 experiment examined a wide range of electromagnetic processes for multi-GeV electrons and photons interacting with oriented single crystals. The various types of crystals and their orientations were used for producing photon beams and for converting and measuring their polarisation. The radiation emitted by 178 GeV unpolarised electrons incident on a 1.5 cm thick Si crystal oriented in the Coherent Bremsstrahlung (CB) and the String-of-Strings (SOS) modes was used to obtain multi-GeV linearly polarised photon beams. A new crystal polarimetry technique was established for measuring the linear polarisation of the photon beam. The polarimeter is based on the dependence of the Coherent Pair Production (CPP) cross section in oriented single crystals on the direction of the photon polarisation with respect to the crystal plane. Both a 1 mm thick single crystal of Germanium and a 4 mm thick multi-tile set of synthetic Diamond crystals were used as analyzers of the linear polarisation. A birefringence phenomenon, the conversion of the linear polarisation of the photon beam into circular polarisation, was observed. This was achieved by letting the linearly polarised photon beam pass through a 10 cm thick Silicon single crystal that acted as a "quarter wave plate" (QWP) as suggested by N. Cabibbo et al.Comment: Presented at International workshop "Relativistic Channeling and Related Coherent Phenomena", Frascati (Rome) 23-26 March 200

    Coherent bremsstrahlung, boherent pair production, birefringence and polarimetry in the 20-170 GeV energy range using aligned crystals

    Get PDF
    The processes of coherent bremsstrahlung (CB) and coherent pair production (CPP) based on aligned crystal targets have been studied in the energy range 20-170 GeV. The experimental arrangement allowed for measurements of single photon properties of these phenomena including their polarization dependences. This is significant as the theoretical description of CB and CPP is an area of active theoretical debate and development. With the theoretical approach used in this paper both the measured cross sections and polarization observables are predicted very well. This indicates a proper understanding of CB and CPP up to energies of 170 GeV. Birefringence in CPP on aligned crystals is applied to determine the polarization parameters in our measurements. New technologies for high energy photon beam optics including phase plates and polarimeters for linear and circular polarization are demonstrated in this experiment. Coherent bremsstrahlung for the strings-on-strings (SOS) orientation yields a larger enhancement for hard photons than CB for the channeling orientations of the crystal. Our measurements and our calculations indicate low photon polarizations for the high energy SOS photons.Comment: 23 pages, 27 figures, 2 tables, REVTeX4 two column

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore