1,885 research outputs found

    Development and demonstration of next generation technology for Nb_3Sn accelerator magnets with lower cost, improved performance uniformity, and higher operating point in the 12-14 T range

    Full text link
    The scope of the proposal outlined in this white paper is the development and demonstration of the technology needed for next generation of Nb_3Sn accelerator magnets in the 12-14 T range. The main goal is to cut magnet cold-mass cost by a factor 2 or higher with respect to the Nb_3Sn magnets produced by the US Accelerator Upgrade Project (AUP) for the High-Luminosity Large Hadron Collider (HL-LHC). This goal will be achieved by significant reduction of labor hours, higher operating point, and improved performance uniformity. A key factor will be automation that will be achieved through industry involvement and benefitting from the experience gained in US national laboratories through the production of the AUP magnets. This partnership will enable the development of a technology that will be easily transferable to industry for mid- and large-scale production of Nb_3Sn accelerator magnets in the 12-14 T range. This step is essential to enable next generation of colliders such as the FNAL-proposed Muon Collider, FCC and other HEP hadron colliders. This is a Directed R&D where direction is given by the field range and industry involvement for high-automation and industry-ready technology. The plan includes ten milestones, to be achieved in 6-8 years at the cost of 5-7 $M/year.Comment: White Paper for Snowmass 2022, 8 pages, 2 tables, 1 figur

    Efficiency of Finding Muon Track Trigger Primitives in CMS Cathode Strip Chambers

    Get PDF
    In the CMS Experiment, muon detection in the forward direction is accomplished by cathode strip chambers~(CSC). These detectors identify muons, provide a fast muon trigger, and give a precise measurement of the muon trajectory. There are 468 six-plane CSCs in the system. The efficiency of finding muon trigger primitives (muon track segments) was studied using~36 CMS CSCs and cosmic ray muons during the Magnet Test and Cosmic Challenge~(MTCC) exercise conducted by the~CMS experiment in~2006. In contrast to earlier studies that used muon beams to illuminate a very small chamber area (<‚ÄČ‚Ā£0.01< \! 0.01~m2^2), results presented in this paper were obtained by many installed CSCs operating {\em in situ} over an area of ‚Čą‚ÄČ‚Ā£23\approx \! 23~m2^2 as a part of the~CMS experiment. The efficiency of finding 2-dimensional trigger primitives within 6-layer chambers was found to be~99.93¬Ī0.03%99.93 \pm 0.03\%. These segments, found by the CSC electronics within 800800~ns after the passing of a muon through the chambers, are the input information for the Level-1 muon trigger and, also, are a necessary condition for chambers to be read out by the Data Acquisition System

    Combined Forward-Backward Asymmetry Measurements in Top-Antitop Quark Production at the Tevatron

    Get PDF
    The CDF and D0 experiments at the Fermilab Tevatron have measured the asymmetry between yields of forward- and backward-produced top and antitop quarks based on their rapidity difference and the asymmetry between their decay leptons. These measurements use the full data sets collected in proton-antiproton collisions at a center-of-mass energy of s=1.96\sqrt s =1.96 TeV. We report the results of combinations of the inclusive asymmetries and their differential dependencies on relevant kinematic quantities. The combined inclusive asymmetry is AFBttňČ=0.128¬Ī0.025A_{\mathrm{FB}}^{t\bar{t}} = 0.128 \pm 0.025. The combined inclusive and differential asymmetries are consistent with recent standard model predictions

    Differential cross section measurements for the production of a W boson in association with jets in proton‚Äďproton collisions at ‚ąös = 7 TeV

    Get PDF
    Measurements are reported of differential cross sections for the production of a W boson, which decays into a muon and a neutrino, in association with jets, as a function of several variables, including the transverse momenta (pT) and pseudorapidities of the four leading jets, the scalar sum of jet transverse momenta (HT), and the difference in azimuthal angle between the directions of each jet and the muon. The data sample of pp collisions at a centre-of-mass energy of 7 TeV was collected with the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 fb[superscript ‚ąí1]. The measured cross sections are compared to predictions from Monte Carlo generators, MadGraph + pythia and sherpa, and to next-to-leading-order calculations from BlackHat + sherpa. The differential cross sections are found to be in agreement with the predictions, apart from the pT distributions of the leading jets at high pT values, the distributions of the HT at high-HT and low jet multiplicity, and the distribution of the difference in azimuthal angle between the leading jet and the muon at low values.United States. Dept. of EnergyNational Science Foundation (U.S.)Alfred P. Sloan Foundatio

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an