56 research outputs found

    Seasonal differences in soil CO2 efflux and carbon storage in Ntwetwe Pan, Makgadikgadi Basin, Botswana

    Get PDF
    The carbon cycle in salt pans is complex and poorly understood. Field-based data are needed to improve regional estimates of C storage and land-atmosphere CO2 fluxes from dryland environments where pans are prevalent. This paper provides a first estimate of C stores and CO2 efflux within the salt pan, grassland and woodland of Ntwetwe Pan in the Makgadikgadi Basin, Botswana. C fluxes and stores associated with cyanobacteria-salt crusts are also determined. Total C stores are approximately an order of magnitude greater than on neighbouring Kalahari Sands at 675¬Ī41, 760¬Ī94 and 274¬Ī15 tonsha-1 to 1m depth in the woodland, grassland and salt pan respectively. Most of the C is found as carbonate, with organic C comprising 4.6-10% of total C. CO2 efflux increased with temperature and also increased for a few hours after flooding of the pan surface. Crusts were a small net contributor to CO2 efflux in the dry season but could be a net CO2 sink in the wet season. The biogeochemistry of the sediment is likely to facilitate rapid conversion of organic C from aquatic organisms, biological crusts and algal mats into inorganic carbonates. Although further work is required to improve estimates of the spatial and temporal distribution of C, our data have demonstrated the substantial C store with the Makgadikgadi environment and the important role of biological crusts in the C cycle

    Environmental correlates of species rank ‚ąí abundance distributions in global drylands

    Get PDF
    Theoretical models predict lognormal species abundance distributions (SADs) in stable and productive environments, with log-series SADs in less stable, dispersal driven communities. We studied patterns of relative species abundances of perennial vascular plants in global dryland communities to: (i) assess the influence of climatic and soil characteristics on the observed SADs, (ii) infer how environmental variability influences relative abundances, and (iii) evaluate how colonisation dynamics and environmental filters shape abundance distributions. We fitted lognormal and log-series SADs to 91 sites containing at least 15 species of perennial vascular plants. The dependence of species relative abundances on soil and climate variables was assessed using general linear models. Irrespective of habitat type and latitude, the majority of the SADs (70.3%) were best described by a lognormal distribution. Lognormal SADs were associated with low annual precipitation, higher aridity, high soil carbon content, and higher variability of climate variables and soil nitrate. Our results do not corroborate models predicting the prevalence of log-series SADs in dryland communities. As lognormal SADs were particularly associated with sites with drier conditions and a higher environmental variability, we reject models linking lognormality to environmental stability and high productivity conditions. Instead our results point to the prevalence of lognormal SADs in heterogeneous environments, allowing for more evenly distributed plant communities, or in stressful ecosystems, which are generally shaped by strong habitat filters and limited colonisation. This suggests that drylands may be resilient to environmental changes because the many species with intermediate relative abundances could take over ecosystem functioning if the environment becomes suboptimal for dominant species

    Temperature and aridity regulate spatial variability of soil multifunctionality in drylands across the globe

    Get PDF
    The relationship between the spatial variability of soil multifunctionality (i.e. the capacity of soils to conduct multiple functions; SVM) and major climatic drivers, such as temperature and aridity, has never been assessed globally in terrestrial ecosystems. We surveyed 236 dryland ecosystems from six continents to evaluate the relative importance of aridity and mean annual temperature, and of other abiotic (e.g., texture) and biotic (e.g., plant cover) variables as drivers of SVM, calculated as the averaged coefficient of variation for multiple soil variables linked to nutrient stocks and cycling. We found that increases in temperature and aridity were globally correlated to increases in SVM. Some of these climatic effects on SVM were direct, but others were indirectly driven through reductions in the number of vegetation patches and increases in soil sand content. The predictive capacity of our structural equation modelling was clearly higher for the spatial variability of N- than for C- and P- related soil variables. In the case of N cycling, the effects of temperature and aridity were both direct and indirect via changes in soil properties. For C and P, the effect of climate was mainly indirect via changes in plant attributes. These results suggest that future changes in climate may decouple the spatial availability of these elements for plants and microbes in dryland soils. Our findings significantly advance our understanding of the patterns and mechanisms driving SVM in drylands across the globe, which is critical for predicting changes in ecosystem functioning in response to climate change

    The influence of trees, shrubs, and grasses on microclimate, soil carbon, nitrogen, and CO2 efflux:Potential implications of shrub encroachment for Kalahari rangelands

    Get PDF
    Shrub encroachment is a well-documented phenomenon affecting many of the world's drylands. The alteration of vegetation structure and species composition can lead to changes in local microclimate and soil properties which in turn affect carbon cycling. The objectives of this paper were to quantify differences in air temperatures, soil carbon, nitrogen, and CO2 efflux under trees (Vachellia erioloba), shrubs (Grewia flava), annual and perennial grasses (Schmidtia kalahariensis and Eragrostis lehmanniana) collected over three seasons at a site in Kgalagadi District, Botswana, in order to determine the vegetation-soil feedback mechanism affecting the carbon cycle. Air temperatures were logged continuously and soil CO2 efflux was determined throughout the day and evening using closed respiration chambers and an infrared gas analyser. There were significant differences in soil carbon, total nitrogen, CO2 efflux, light and temperatures beneath the canopies of trees, shrubs and grasses. Daytime air temperatures beneath shrubs and trees were cooler compared to grass sites, particularly in summer months. Night time air temperatures under shrubs and trees were, however, warmer than at the grass sites. There was also significantly more soil carbon, nitrogen and CO2 efflux under shrubs and trees compared to grasses. Whilst the differences observed in soils and microclimate may reinforce the competitive dominance of shrubs and present challenges to strategies designed to manage encroachment they should not be viewed as entirely negative. Our findings highlight some of the dichotomies and challenges to be addressed before interventions aiming to bring about more sustainable land management can be implementedpublishersversionPeer reviewe

    Assessing Vulnerability to Climate Change in Dryland Livelihood Systems:Conceptual Challenges and Interdisciplinary Solutions

    Get PDF
    Over 40% of the earth's land surface are drylands that are home to approximately 2.5 billion people. Livelihood sustainability in drylands is threatened by a complex and interrelated range of social, economic, political, and environmental changes that present significant challenges to researchers, policy makers, and, above all, rural land users. Dynamic ecological and environmental change models suggest that climate change induced drought events may push dryland systems to cross biophysical thresholds, causing a long-term drop in agricultural productivity. Therefore, research is needed to explore how development strategies and other socioeconomic changes help livelihoods become more resilient and robust at a time of growing climatic risk and uncertainty. As a result, the overarching goal of this special feature is to conduct a structured comparison of how livelihood systems in different dryland regions are affected by drought, thereby making methodological, empirical, and theoretical contributions to our understanding of how these types of social-ecological systems may be vulnerable to climate change. In introducing these issues, the purpose of this editorial is to provide an overview of the two main intellectual challenges of this work, namely: (1) how to conceptualize vulnerability to climate change in coupled social-ecological systems; and (2) the methodological challenges of anticipating trends in vulnerability in dynamic environments.</p

    Assessment of physical and hydrological properties of biological soil crusts using X-ray microtomography and modeling

    Get PDF
    Biological soil crusts (BSCs) are formed by aggregates of soil particles and communities of microbial organisms and are common in all drylands. The role of BSCs on infiltration remains uncertain due to the lack of data on their role in affecting soil physical properties such as porosity and structure. Quantitative assessment of these properties is primarily hindered by the fragile nature of the crusts. Here we show how the use of a combination of non-destructive imaging X-ray microtomography (XMT) and Lattice Boltzmann method (LBM) enables quantification of key soil physical parameters and the modeling of water flow through BSCs samples from Kalahari Sands, Botswana. We quantify porosity and flow changes as a result of mechanical disturbance of such a fragile cyanobacteria-dominated crust. Results show significant variations in porosity between different types of crusts and how they affect the flow and that disturbance of a cyanobacteria-dominated crust results in the breakdown of larger pore spaces and reduces flow rates through the surface layer. We conclude that the XMT‚ÄďLBM approach is well suited for study of fragile surface crust samples where physical and hydraulic properties cannot be easily quantified using conventional methods

    Biotic and Abiotic Drivers of Topsoil Organic Carbon Concentration in Drylands Have Similar Effects at Regional and Global Scales

    Get PDF
    Drylands contain 25% of the world‚Äôs soil organic carbon (SOC), which is controlled by many factors, both abiotic and biotic. Thus, understanding how these factors control SOC concentration can help to design more sustainable land-use practices in drylands aiming to foster and preserve SOC storage, something particularly important to fight ongoing global warming. We use two independent, largescale databases with contrasting geographic coverage (236 sites in global drylands and 185 sites in Patagonia, Argentina) to evaluate the relative importance of abiotic (precipitation, temperature and soil texture) and biotic (primary productivity) factors as drivers of SOC concentration in drylands at global and regional scales. We found that biotic and abiotic factors had similar effects on SOC concentration across regional and global scales: Maximum temperature and sand content had negative effects, while precipitation and plant productivity exerted positive effects. Our findings provide empirical evidence that increases in temperature and reductions in rainfall, as forecasted by climatic models in many drylands worldwide, promote declines in SOC both directly and indirectly via the reduction in plant productivity. This has important implications for the conservation of drylands under climate change; land management should seek to enhance plant productivity as a tool to offset the negative impact of climate change on SOC storage and on associated ecosystem services.Estaci√≥n Experimental Agropecuaria BarilocheFil: Gaitan, Juan Jose. Instituto Nacional de Tecnolog√≠a Agropecuaria (INTA). Instituto de Suelos; Argentina. Universidad Nacional de Luj√°n. Departamento de Tecnolog√≠a; Argentina. Consejo Nacional de Investigaciones Cient√≠ficas y T√©cnicas; ArgentinaFil: Maestre, Fernando T. Universidad Rey Juan Carlos. Escuela Superior de Ciencias Experimentales y Tecnolog√≠a. Departamento de Biolog√≠a y Geolog√≠a, F√≠sica y Qu√≠mica Inorg√°nica; Espa√ĪaFil: Bran, Donaldo Eduardo. Instituto Nacional de Tecnolog√≠a Agropecuaria (INTA). Estaci√≥n Experimental Agropecuaria Bariloche; ArgentinaFil: Buono, Gustavo Gabriel. Instituto Nacional de Tecnolog√≠a Agropecuaria (INTA). Estaci√≥n Experimental Agropecuaria Chubut; ArgentinaFil: Dougill, Andrew J. University of Leeds. School of Earth and Environment; Reino UnidoFil: Garcia Martinez, Guillermo Carlos. Instituto Nacional de Tecnolog√≠a Agropecuaria (INTA). Estaci√≥n Experimental Agropecuaria Esquel; ArgentinaFil: Ferrante, Daniela. Instituto Nacional de Tecnolog√≠a Agropecuaria (INTA). Estaci√≥n Experimental Agropecuaria Santa Cruz; ArgentinaFil: Guuroh, Reginald Tang. CSIR-Forestry Research Institute of Ghana; GhanaFil: Linstadter, Anja. University of Cologne. Botanical Institute; AlemaniaFil: Massara Paletto, Virginia. Instituto Nacional de Tecnolog√≠a Agropecuaria (INTA). Estaci√≥n Experimental Agropecuaria Chubut; ArgentinaFil: Thomas, Andrew David. Aberystwyth University. Department of Geography and Earth Sciences; Reino UnidoFil: Oliva, Gabriel Esteban. Instituto Nacional de Tecnolog√≠a Agropecuaria (INTA). Estaci√≥n Experimental Agropecuaria Santa Cruz; Argentin
    • ‚Ķ