14,460 research outputs found

    McStas and Mantid integration

    Full text link
    McStas and Mantid are two well established software frameworks within the neutron scattering community. McStas has been primarily used for simulating the neutron transport of instruments, while Mantid has been primarily used for data reduction. We report here the status of our work done on the interoperability between the instrument simulation software McStas and the data reduction software Mantid. This provides a demonstration of how to successfully link together two software that otherwise have been developed independently, and in particular here show how this has been achieved for an instrument simulation software and a data reduction software. This paper will also provide examples of some of the expected future enhanced analysis that can be achieved from combining accurate instrument and sample simulations with software for correcting raw data. In the case of this work for raw data collected at large scale neutron facilities.Comment: 17 pages, 12 figures, POSTPRINT with proofs of article submitted to Journal of Neutron Researc

    Coulomb blockade and Non-Fermi-liquid behavior in quantum dots

    Full text link
    The non-Fermi-liquid properties of an ultrasmall quantum dot coupled to a lead and to a quantum box are investigated. Tuning the ratio of the tunneling amplitudes to the lead and box, we find a line of two-channel Kondo fixed points for arbitrary Coulomb repulsion on the dot, governing the transition between two distinct Fermi-liquid regimes. The Fermi liquids are characterized by different values of the conductance. For an asymmetric dot, spin and charge degrees of freedom are entangled: a continuous transition from a spin to a charge two-channel Kondo effect evolves. The crossover temperature to the two-channel Kondo effect is greatly enhanced away from the local-moment regime, making this exotic effect accessible in realistic quantum-dot devices.Comment: 5 figure

    One-Dimensional Theory of the Quantum Hall System

    Full text link
    We consider the lowest Landau level on a torus as a function of its circumference L1L_1. When L10L_1\to 0, the ground state at general rational filling fraction is a crystal with a gap--a Tao-Thouless state. For filling fractions ν=p/(2pm+1)\nu=p/(2pm+1), these states are the limits of Laughlin's or Jain's wave functions describing the gapped quantum Hall states when L1L_1\to \infty. For the half-filled Landau level, there is a transition to a Fermi sea of non-interacting neutral dipoles, or rather to a Luttinger liquid modification thereof, at L15L_1\sim5 magnetic lengths. This state is a version of the Rezayi-Read state, and develops continuously into the state that is believed to describe the observed metallic phase as L1L_1\to \infty. Furthermore, the effective Landau level structure that emerges within the lowest Landau level follows from the magnetic symmetries.Comment: 4 pages, 1 figur

    Half-Filled Lowest Landau Level on a Thin Torus

    Full text link
    We solve a model that describes an interacting electron gas in the half-filled lowest Landau level on a thin torus, with radius of the order of the magnetic length. The low energy sector consists of non-interacting, one-dimensional, neutral fermions. The ground state, which is homogeneous, is the Fermi sea obtained by filling the negative energy states and the excited states are gapless neutral excitations out of this one-dimensional sea. Although the limit considered is extreme, the solution has a striking resemblance to the composite fermion description of the bulk ν=1/2\nu=1/2 state--the ground state is homogeneous and the excitations are neutral and gapless. This suggests a one-dimensional Luttinger liquid description, with possible observable effects in transport experiments, of the bulk state where it develops continuously from the state on a thin torus as the radius increases.Comment: 4 pages, 1 figur

    Constant net-time headway as key mechanism behind pedestrian flow dynamics

    Full text link
    We show that keeping a constant lower limit on the net-time headway is the key mechanism behind the dynamics of pedestrian streams. There is a large variety in flow and speed as functions of density for empirical data of pedestrian streams, obtained from studies in different countries. The net-time headway however, stays approximately constant over all these different data sets. By using this fact, we demonstrate how the underlying dynamics of pedestrian crowds, naturally follows from local interactions. This means that there is no need to come up with an arbitrary fit function (with arbitrary fit parameters) as has traditionally been done. Further, by using not only the average density values, but the variance as well, we show how the recently reported stop-and-go waves [Helbing et al., Physical Review E, 75, 046109] emerge when local density variations take values exceeding a certain maximum global (average) density, which makes pedestrians stop.Comment: 7 pages, 7 figure

    Multiadaptive Galerkin Methods for ODEs III: A Priori Error Estimates

    Full text link
    The multiadaptive continuous/discontinuous Galerkin methods mcG(q) and mdG(q) for the numerical solution of initial value problems for ordinary differential equations are based on piecewise polynomial approximation of degree q on partitions in time with time steps which may vary for different components of the computed solution. In this paper, we prove general order a priori error estimates for the mcG(q) and mdG(q) methods. To prove the error estimates, we represent the error in terms of a discrete dual solution and the residual of an interpolant of the exact solution. The estimates then follow from interpolation estimates, together with stability estimates for the discrete dual solution

    Ground state phases of the Half-Filled One-Dimensional Extended Hubbard Model

    Full text link
    Using quantum Monte Carlo simulations, results of a strong-coupling expansion, and Luttinger liquid theory, we determine quantitatively the ground state phase diagram of the one-dimensional extended Hubbard model with on-site and nearest-neighbor repulsions U and V. We show that spin frustration stabilizes a bond-ordered (dimerized) state for U appr. V/2 up to U/t appr. 9, where t is the nearest-neighbor hopping. The transition from the dimerized state to the staggered charge-density-wave state for large V/U is continuous for U up to appr. 5.5 and first-order for higher U.Comment: 4 pages, 4 figure

    Dynamical mean field solution of the Bose-Hubbard model

    Full text link
    We present the effective action and self-consistency equations for the bosonic dynamical mean field (B-DMFT) approximation to the bosonic Hubbard model and show that it provides remarkably accurate phase diagrams and correlation functions. To solve the bosonic dynamical mean field equations we use a continuous-time Monte Carlo method for bosonic impurity models based on a diagrammatic expansion in the hybridization and condensate coupling. This method is readily generalized to bosonic mixtures, spinful bosons, and Bose-Fermi mixtures.Comment: 10 pages, 3 figures. includes supplementary materia

    X-ray Halos and Large Grains in the Diffuse Interstellar Medium

    Get PDF
    Recent observations with dust detectors on board the interplanetary spacecraft Ulysses and Galileo have recorded a substantial flux of large interstellar grains with radii between 0.25 and 2.0 mu entering the solar system from the local interstellar cloud. The most commonly used interstellar grain size distribution is characterized by a a^-3.5 power law in grain radii a, and extends to a maximum grain radius of 0.25 mu. The extension of the interstellar grain size distribution to such large radii will have a major effect on the median grain size, and on the amount of mass needed to be tied up in dust for a given visual optical depth. It is therefore important to investigate whether this population of larger dust particles prevails in the general interstellar medium, or if it is merely a local phenomenon. The presence of large interstellar grains can be mainly inferred from their effect on the intensity and radial profiles of scattering halos around X-ray sources. In this paper we examine the grain size distribution that gives rise to the X-ray halo around Nova Cygni 1992. The results of our study confirm the need to extend the interstellar grain size distribution in the direction of this source to and possibly beyond 2.0 mu. The model that gives the best fit to the halo data is characterized by: (1) a grain size distribution that follows an a^-3.5 power law up to 0.50 mu, followed by an a^-4.0 extension from 0.50 mu to 2.0 mu; and (2) silicate and graphite (carbon) dust-to-gas mass ratios of 0.0044 and 0.0022, respectively, consistent with solar abundances constraints. Additional observations of X-ray halos probing other spatial directions are badly needed to test the general validity of this result.Comment: 17 pages, incl. 1 figure, accepted for publ. by ApJ Letter