5,342 research outputs found

    Testing coupled dark energy with next-generation large-scale observations

    Full text link
    Coupling dark energy to dark matter provides one of the simplest way to effectively modify gravity at large scales without strong constraints from local (i.e. solar system) observations. Models of coupled dark energy have been studied several times in the past and are already significantly constrained by cosmic microwave background experiments. In this paper we estimate the constraints that future large-scale observations will be able to put on the coupling and in general on all the parameters of the model. We combine cosmic microwave background, tomographic weak lensing, redshift distortions and power spectrum probes. We show that next-generation observations can improve the current constraint on the coupling to dark matter by two orders of magnitude; this constraint is complementary to the current solar-system bounds on a coupling to baryons.Comment: 18 pages, 12 figs, 8 table

    Multiscale mass-spring models of carbon nanotube foams

    Get PDF
    This article is concerned with the mechanical properties of dense, vertically aligned CNT foams subject to one-dimensional compressive loading. We develop a discrete model directly inspired by the micromechanical response reported experimentally for CNT foams, where infinitesimal portions of the tubes are represented by collections of uniform bi-stable springs. Under cyclic loading, the given model predicts an initial elastic deformation, a non-homogeneous buckling regime, and a densification response, accompanied by a hysteretic unloading path. We compute the dynamic dissipation of such a model through an analytic approach. The continuum limit of the microscopic spring chain defines a mesoscopic dissipative element (micro-meso transition) which represents a finite portion of the foam thickness. An upper-scale model formed by a chain of non-uniform mesoscopic springs is employed to describe the entire CNT foam. A numerical approximation illustrates the main features of the proposed multiscale approach. Available experimental results on the compressive response of CNT foams are fitted with excellent agreement

    Constraints on coupled dark energy using CMB data from WMAP and SPT

    Full text link
    We consider the case of a coupling in the dark cosmological sector, where a dark energy scalar field modifies the gravitational attraction between dark matter particles. We find that the strength of the coupling {\beta} is constrained using current Cosmic Microwave Background (CMB) data, including WMAP7 and SPT, to be less than 0.063 (0.11) at 68% (95%) confidence level. Further, we consider the additional effect of the CMB-lensing amplitude, curvature, effective number of relativistic species and massive neutrinos and show that the bound from current data on {\beta} is already strong enough to be rather stable with respect to any of these variables. The strongest effect is obtained when we allow for massive neutrinos, in which case the bound becomes slightly weaker, {\beta} < 0.084(0.14). A larger value of the effective number of relativistic degrees of freedom favors larger couplings between dark matter and dark energy as well as values of the spectral index closer to 1. Adding the present constraints on the Hubble constant, as well as from baryon acoustic oscillations and supernovae Ia, we find {\beta} < 0.050(0.074). In this case we also find an interesting likelihood peak for {\beta} = 0.041 (still compatible with 0 at 1{\sigma}). This peak comes mostly from a slight difference between the Hubble parameter HST result and the WMAP7+SPT best fit. Finally, we show that forecasts of Planck+SPT mock data can pin down the coupling to a precision of better than 1% and detect whether the marginal peak we find at small non zero coupling is a real effect.Comment: 22 pages, 17 figure

    Mapping the galactic gravitational potential with peculiar acceleration

    Get PDF
    It has been suggested recently that the change in cosmological redshift (the Sandage test of expansion) could be observed in the next generation of large telescopes and ultra-stable spectrographs. In a recent paper we estimated the change of peculiar velocity, i.e. the peculiar acceleration, in nearby galaxies and clusters and shown it to be of the same order of magnitude as the typical cosmological signal. Mapping the acceleration field allows for a reconstruction of the galactic gravitational potential without assuming virialization. In this paper we focus on the peculiar acceleration in our own Galaxy, modeled as a Kuzmin disc and a dark matter spherical halo. We estimate the peculiar acceleration for all known Galactic globular clusters and find some cases with an expected velocity shift in excess of 20 cm/sec for observations fifteen years apart, well above the typical cosmological acceleration. We then compare the predicted signal for a MOND (modified Newtonian dynamics) model in which the spherical dark matter halo is absent. We find that the signal pattern is qualitatively different, showing that the peculiar acceleration field could be employed to test competing theories of gravity. However the difference seems too small to be detectable in the near future.Comment: 11 pages, 10 figures, 3 tables, minor changes, accepted for publication by MNRA

    Constraints on a scale-dependent bias from galaxy clustering

    Full text link
    We forecast the future constraints on scale-dependent parametrizations of galaxy bias and their impact on the estimate of cosmological parameters from the power spectrum of galaxies measured in a spectroscopic redshift survey. For the latter we assume a wide survey at relatively large redshifts, similar to the planned Euclid survey, as baseline for future experiments. To assess the impact of the bias we perform a Fisher matrix analysis and we adopt two different parametrizations of scale-dependent bias. The fiducial models for galaxy bias are calibrated using a mock catalogs of Hα\alpha emitting galaxies mimicking the expected properties of the objects that will be targeted by the Euclid survey. In our analysis we have obtained two main results. First of all, allowing for a scale-dependent bias does not significantly increase the errors on the other cosmological parameters apart from the rms amplitude of density fluctuations, σ8\sigma_{8}, and the growth index Îł\gamma, whose uncertainties increase by a factor up to two, depending on the bias model adopted. Second, we find that the accuracy in the linear bias parameter b0b_{0} can be estimated to within 1-2\% at various redshifts regardless of the fiducial model. The non-linear bias parameters have significantly large errors that depend on the model adopted. Despite of this, in the more realistic scenarios departures from the simple linear bias prescription can be detected with a ∌2 σ\sim2\,\sigma significance at each redshift explored. Finally, we use the Fisher Matrix formalism to assess the impact of assuming an incorrect bias model and found that the systematic errors induced on the cosmological parameters are similar or even larger than the statistical ones.Comment: new section added; conclusions unchanged; accepted for publication in PR

    Non-local dilaton coupling to dark matter: cosmic acceleration and pressure backreaction

    Full text link
    A model of non-local dilaton interactions, motivated by string duality symmetries, is applied to a scenario of "coupled quintessence" in which the dilaton dark energy is non-locally coupled to the dark-matter sources. It is shown that the non-local effects tend to generate a backreaction which -- for strong enough coupling -- can automatically compensate the acceleration due to the negative pressure of the dilaton potential, thus asymptotically restoring the standard (dust-dominated) decelerated regime. This result is illustrated by analytical computations and numerical examples.Comment: 11 pages, 1 figure ep

    Dark Matter and Dark Energy

    Full text link
    I briefly review our current understanding of dark matter and dark energy. The first part of this paper focusses on issues pertaining to dark matter including observational evidence for its existence, current constraints and the `abundance of substructure' and `cuspy core' issues which arise in CDM. I also briefly describe MOND. The second part of this review focusses on dark energy. In this part I discuss the significance of the cosmological constant problem which leads to a predicted value of the cosmological constant which is almost 1012310^{123} times larger than the observed value \la/8\pi G \simeq 10^{-47}GeV4^4. Setting \la to this small value ensures that the acceleration of the universe is a fairly recent phenomenon giving rise to the `cosmic coincidence' conundrum according to which we live during a special epoch when the density in matter and \la are almost equal. Anthropic arguments are briefly discussed but more emphasis is placed upon dynamical dark energy models in which the equation of state is time dependent. These include Quintessence, Braneworld models, Chaplygin gas and Phantom energy. Model independent methods to determine the cosmic equation of state and the Statefinder diagnostic are also discussed. The Statefinder has the attractive property \atridot/a H^3 = 1 for LCDM, which is helpful for differentiating between LCDM and rival dark energy models. The review ends with a brief discussion of the fate of the universe in dark energy models.Comment: 40 pages, 11 figures, Lectures presented at the Second Aegean Summer School on the Early Universe, Syros, Greece, September 2003, New References added Final version to appear in the Proceeding

    A late-time transition in the cosmic dark energy?

    Get PDF
    We study constraints from the latest CMB, large scale structure (2dF, Abell/ACO, PSCz) and SN1a data on dark energy models with a sharp transition in their equation of state, w(z). Such a transition is motivated by models like vacuum metamorphosis where non-perturbative quantum effects are important at late times. We allow the transition to occur at a specific redshift, z_t, to a final negative pressure -1 < w_f < -1/3. We find that the CMB and supernovae data, in particular, prefer a late-time transition due to the associated delay in cosmic acceleration. The best fits (with 1 sigma errors) to all the data are z_t = 2.0^{+2.2}_{-0.76}, \Omega_Q = 0.73^{+0.02}_{-0.04} and w_f = -1^{+0.2}.Comment: 6 Pages, 5 colour figures, MNRAS styl
    • 

    corecore