16 research outputs found

    Musca domestica Cecropin (Mdc) Alleviates Salmonella typhimurium-Induced Colonic Mucosal Barrier Impairment: Associating With Inflammatory and Oxidative Stress Response, Tight Junction as Well as Intestinal Flora

    Get PDF
    Salmonella typhimurium, a Gram-negative food-borne pathogen, induces impairment in intestinal mucosal barrier function frequently. The injury is related to many factors such as inflammation, oxidative stress, tight junctions and flora changes in the host intestine. Musca domestica cecropin (Mdc), a novel antimicrobial peptide containing 40 amino acids, has potential antibacterial, anti-inflammatory, and immunological functions. It remains unclear exactly whether and how Mdc reduces colonic mucosal barrier damage caused by S. typhimurium. Twenty four 6-week-old male mice were divided into four groups: normal group, control group (S. typhimurium-challenged), Mdc group, and ceftriaxone sodium group (Cs group). HE staining and transmission electron microscopy (TEM) were performed to observe the morphology of the colon tissues. Bacterial load of S. typhimurium in colon, liver and spleen were determined by bacterial plate counting. Inflammatory factors were detected by enzyme linked immunosorbent assay (ELISA). Oxidative stress levels in the colon tissues were also analyzed. Immunofluorescence analysis, RT-PCR, and Western blot were carried out to examine the levels of tight junction and inflammatory proteins. The intestinal microbiota composition was assessed via 16s rDNA sequencing. We successfully built and evaluated an S. typhimurium-infection model in mice. Morphology and microcosmic change of the colon tissues confirmed the protective qualities of Mdc. Mdc could inhibit colonic inflammation and oxidative stress. Tight junctions were improved significantly after Mdc administration. Interestingly, Mdc ameliorated intestinal flora imbalance, which may be related to the improvement of tight junction. Our results shed a new light on protective effects and mechanism of the antimicrobial peptide Mdc on colonic mucosal barrier damage caused by S. typhimurium infection. Mdc is expected to be an important candidate for S. typhimurium infection treatment

    Facial Gestures for Infotainment Systems

    No full text
    The long term purpose of this project is to reduce the attention demand of drivers whenusing infotainment systems in a car setting. With the development of the car industry,a contradiction between safety issue and entertainment demands in cars has arisen.Speech-recognition-based controls meet their bottleneck in the presence of backgroundaudio (such as engine noise, other passengers speech and/or the infotainment systemitself). We propose a new method to control the infotainment system using computervision technology in this thesis. This project uses algorithms of object detection, opticalflow(estimated motion) and feature analysis to build a communication channel betweenhuman and machine. By tracking the driver’s head and measuring the optical flow overthe lip region, the driver’s mouth feature can be indicated. Performance concerning theefficiency and accuracy of the system is analyzed. The contribution of this thesis is toprovide a method using facial gestures to communicate with the system, and we focuson the movement of lips especially. This method offers a possibility to create a new modeof interaction between human and machine

    Numerical Simulation of Temperature and Fluid Fields in Solidification Process of Ferritic Stainless Steel under Vibration Conditions

    No full text
    A three-dimensional model of a circular casting mold with a vibrating nucleus generator was established, and the characteristics of temperature and flow fields during the solidification process of ferritic stainless steel Cr17 in the casting mold were analyzed using finite element and finite difference methods. A standard k-ε turbulent current model was adopted to simulate the temperature field, and a standard k-ε model in Reynolds-averaged Navier–Stokes equations (RANS) was employed to deal with the flow field. The temperature field diffuses outward with a positive temperature gradient. Low degrees of undercooling can prevent solidified shells from forming rapidly on the surface of the nucleus generator. The temperature perpendicular to the direction of vibration is lower than that in the direction of vibration. The flow field exhibits a heart-shaped distribution and spreads gradually outward. The uniform distribution of grains can be achieved at three different frequencies of vibration. The results show that the degree of undercooling affects the distribution of the temperature field while the frequency of vibration affects the flow field significantly. Under the conditions of undercooling of 540 K and vibration frequency of 1000 Hz, the region perpendicular to the vibration direction of the nucleus generator is the optimum area for equiaxed crystal formation

    Interdependence between nanoclusters AuAg24 and Au2Ag41

    No full text
    Despite recent progress in individual nanocluster synthesis, understanding the competing or coexisting effects between particles in solution remains challenging. Here, the authors present the synthesis of a bi-nanocluster system comprising two atomically precise nanoclusters, and map out the interdependent relationship between them

    A novel Na8Fe5(SO4)9@rGO cathode material with high rate capability and ultra-long lifespan for low-cost sodium-ion batteries

    No full text
    Sodium-ion batteries (SIBs) are regarded as the most promising technology for large-scale energy storage systems. However, the practical application of SIBs is still hindered by the lack of applicable cathode materials. Herein, a novel phase-pure polyanionic Na8Fe5(SO4)9 is designed and employed as a cathode material for SIBs for the first time. The Na8Fe5(SO4)9 has an alluaudite-type sulfate framework and small Na+ ion diffusion barriers. As expected, the as-synthesized Na8Fe5(SO4)9@rGO exhibits a high working potential of 3.8 ​V (versus Na/Na+), a superior reversible capacity of 100.2 mAh g−1 at 0.2 ​C, excellent rate performance (∼80 mAh g−1 at 10 ​C, ∼63 mAh g−1 at 50 ​C), and an ultra-long cycling life (91.9% capacity retention after 10,000 cycles at 10 ​C, 81% capacity retention after 20,000 cycles at 50 ​C). We use various techniques and computational methods to comprehensively investigate the electrochemical reaction mechanisms of Na8Fe5(SO4)9@rGO