6 research outputs found

    The Impact of the Board of Directors' Characteristics and Ownership Structure on the Sustainable Development Disclosure in the Banks Listed on the Amman Stock Exchange

    Get PDF
    Purpose: This study tries to comprehend how corporate governance (CG) affects disclosures on economic, social, and environmental sustainability.   Theoretical framework: Recent literature has reported that CG has significant impact on disclosures on economic, social, and environmental sustainability. However, there is still much to investigate and learn about CG in sustainability process.   Design/methodology/approach: For the time period spanning 2015 to 2021, information about study variables was gathered from thirteen (13) banks listed on the Amman Stock Exchange (ASE) through annual reports and quantitative approach.   Findings: Study findings showed that CG components improve sustainability disclosures in general. The study results indicated that, a large board with a female director and a Corporate Social Responsibility Committee (CSRC) is better able to audit and control management choices related to sustainability issues (whether they be economic, environmental, or social) and produces better sustainability disclosure.   Research, Practical and Social implications: This study is proposed to help bank managers understand the real impact of corporate governance practices on sustainability, especially economic, environmental and social indicators of sustainability and how to improve and develop them.   Originality/value: Through quantitative and qualitative analysis, this study contributes methodologically and empirically to the literature on corporate governance and sustainability reporting in emerging and developing economies

    Synthesis and Biological Evaluation of New Pyridone-Annelated Isoindigos as Anti-Proliferative Agents

    No full text
    A selected set of substituted pyridone-annelated isoindigos 3a–f has been synthesized via interaction of 5- and 6-substituted oxindoles 2a–f with 6-ethyl-1,2,9-trioxopyrrolo[3,2-f]quinoline-8-carboxylic acid (1) in acetic acid at reflux. Among these isoindigos, the 5\u27-chloro and 5\u27-bromo derivatives 3b and 3d show strong and selective antiproliferative activities against a panel of human hematological and solid tumor cell-lines, but not against noncancerous cells, suggesting their potential use as anticancer agents. In all the tested cell lines, compound 3b was a 25%–50% more potent inhibitor of cell growth than 3d, suggesting the critical role of the substitution at 5\u27-position of the benzo-ring E. The IC50 values after 48 hours incubation with the 5\u27-chloro compound 3b were 6.60 µM in K562, 8.21 µM in THP-1, 8.97 µM in HepG2, 11.94 µM in MCF-7 and 14.59 µM in Caco-2 cancer cells, while the IC50 values in noncancerous HEK-293 and L-929 were 30.65 µM and 40.40 µM, respectively. In addition, compound 3b induced higher levels apoptosis in K562 cells than 3d, as determined by annexin V/7-AAD flowcytometry analysis. Therefore, further characterization of the antitproliferative mechanisms of compounds 3b and 3d may provide a novel chemotherapeutic agents

    The Pyridone-Annelated Isoindigo (5‘-Cl) Induces Apoptosis, Dysregulation of Mitochondria and Formation of ROS in Leukemic HL-60 Cells

    No full text
    Background/Aims: In our quest to develop an isoindigo with improved efficacy and bioavailability, we recently synthesized a series of novel substituted pyridone-annelated isoindigo and evaluated their antiproliferative effects. We identified the compound [(E)-1-(5'-Chloro-2'-oxoindolin-3'-ylidene)-6-ethyl-2,3,6,9-tetrahydro-2,9-dioxo-1H-pyrrolo[3,2-f] quinoline-8-carboxylic acid], abbreviated as 5'-Cl, which shows selective antiproliferative activities against various cancer cell lines mediated through apoptosis. Here we have investigated the molecular mechanisms underlying the apoptotic activity of 5'-Cl in the human promyelocytic leukemia HL-60 cells. Methods: We employed different methods to determine the apoptotic pathways triggered by 5'-Cl in HL-60 cells, using flow cytometry, nuclear staining, caspases activation, mitochondria functioning, generation of reactive oxygen species (ROS) and Western blotting techniques. Results: Low concentrations (1-8 µM) of 5'-Cl inhibited the growth of HL-60 cells in a dose and time-dependent manner. Cytotoxicity of this compound is found to be mediated by a caspase-dependent apoptosis. Also, there were indications of caspase independent apoptosis as z-VAD-FMK failed to fully rescue the cells from 5‘-Cl-induced apoptosis. In addition, the compound triggered generation of Reactive Oxygen Species (ROS), caused depolarization of the mitochondrial inner membrane, decreased the level of cellular ATP, modulated the expression and phosphorylation of Bcl-2 leading to loss of its association with Bax and increased the release of cytochrome c to the cytosol of treated cells. The effects of 5‘-Cl on mitochondria and apoptosis were substantially blocked in the presence of a combination between z-VAD-FMK and either of the ROS scavenger N-acetyl-L-cysteine (NAC) or pyrrolidine dithiocarbamate (PDTC). Conclusion: We demonstrated that the growth inhibitory effects of 5'-Cl in HL-60 cells involve multiple pathways of apoptosis and dysregulation of mitochondrial functions

    The Anticancer Activity of the Substituted Pyridone-Annelated Isoindigo (5'-Cl) Involves G0/G1 Cell Cycle Arrest and Inactivation of CDKs in the Promyelocytic Leukemia Cell Line HL-60

    No full text
    Background/Aims: The antileukemic potential of isoindigos make them desired candidates for understanding their mechanism of action. We have recently synthesized a novel group of pyridone-annelated isoindigos and identified the derivative 5'-Cl that is cytotoxic to various cancer cell lines. In the present study, we analyzed the effect of this compound on cell cycle of the promyelocytic leukemia cell line HL-60. Methods: HL-60 cells were treated with 5'-Cl and its effect on cell cycle stages were determined by flow cytometry. Expression of cyclins, cyclin dependent kinases (CDKs) and cyclin kinase inhibitors (CKIs) were determined by Western blotting, and activation of CDKs was studied using kinase assays. Results: 5'-Cl remarkably arrested cell cycle in HL-60 cells at the G0/G1 phase in a dose and time-dependent manner. Furthermore, 5'-Cl treatment significantly inhibited expression of D-cyclins, CDK2 and CDK4 and suppressed phosphorylation of the retinoblastoma protein Rb, whereas it increased the level of CKI p21. Molecular modelling experiments show that 5'-Cl may compete with ATP for binding to the catalytic subunit of CDK2 and CDK4 that could lead to inhibition of these enzymes. Indeed, 5'-Cl inhibited the kinase activity of CDK2 and CDK4 both in cell free systems and in treated cells. 5'-Cl also inhibited cell cycle progression in several other tumor cell lines. Conclusion: We demonstrate the potent inhibitory effects of 5'-Cl on HL-60 cells could be mediated by arresting cells in the G0/G1 phase
    corecore