3,271 research outputs found

    Granular Brownian motion

    Get PDF
    We study the stochastic motion of an intruder in a dilute driven granular gas. All particles are coupled to a thermostat, representing the external energy source, which is the sum of random forces and a viscous drag. The dynamics of the intruder, in the large mass limit, is well described by a linear Langevin equation, combining the effects of the external bath and of the "granular bath". The drag and diffusion coefficients are calculated under few assumptions, whose validity is well verified in numerical simulations. We also discuss the non-equilibrium properties of the intruder dynamics, as well as the corrections due to finite packing fraction or finite intruder mass.Comment: 19 pages, 4 figures, in press on Journal of Statistical Mechanics: Theory and Experiment

    Temperature in and out of equilibrium: a review of concepts, tools and attempts

    Full text link
    We review the general aspects of the concept of temperature in equilibrium and non-equilibrium statistical mechanics. Although temperature is an old and well-established notion, it still presents controversial facets. After a short historical survey of the key role of temperature in thermodynamics and statistical mechanics, we tackle a series of issues which have been recently reconsidered. In particular, we discuss different definitions and their relevance for energy fluctuations. The interest in such a topic has been triggered by the recent observation of negative temperatures in condensed matter experiments. Moreover, the ability to manipulate systems at the micro and nano-scale urges to understand and clarify some aspects related to the statistical properties of small systems (as the issue of temperature's "fluctuations"). We also discuss the notion of temperature in a dynamical context, within the theory of linear response for Hamiltonian systems at equilibrium and stochastic models with detailed balance, and the generalised fluctuation-response relations, which provide a hint for an extension of the definition of temperature in far-from-equilibrium systems. To conclude we consider non-Hamiltonian systems, such as granular materials, turbulence and active matter, where a general theoretical framework is still lacking.Comment: Review article, 137 pages, 12 figure

    Ratchet effect driven by Coulomb friction: the asymmetric Rayleigh piston

    Full text link
    The effect of Coulomb friction is studied in the framework of collisional ratchets. It turns out that the average drift of these devices can be expressed as the combination of a term related to the lack of equipartition between the probe and the surrounding bath, and a term featuring the average frictional force. We illustrate this general result in the asymmetric Rayleigh piston, showing how Coulomb friction can induce a ratchet effect in a Brownian particle in contact with an equilibrium bath. An explicit analytical expression for the average velocity of the piston is obtained in the rare collision limit. Numerical simulations support the analytical findings.Comment: 5 pages, 2 figure

    Entropy production for velocity-dependent macroscopic forces: the problem of dissipation without fluctuations

    Full text link
    In macroscopic systems, velocity-dependent phenomenological forces F(v)F(v) are used to model friction, feedback devices or self-propulsion. Such forces usually include a dissipative component which conceals the fast energy exchanges with a thermostat at the environment temperature TT, ruled by a microscopic Hamiltonian HH. The mapping (H,T)→F(v)(H,T) \to F(v) - even if effective for many purposes - may lead to applications of stochastic thermodynamics where an incompleteincomplete fluctuating entropy production (FEP) is derived. An enlightening example is offered by recent macroscopic experiments where dissipation is dominated by solid-on-solid friction, typically modelled through a deterministic Coulomb force F(v)F(v). Through an adaptation of the microscopic Prandtl-Tomlinson model for friction, we show how the FEP is dominated by the heat released to the TT-thermostat, ignored by the macroscopic Coulomb model. This problem, which haunts several studies in the literature, cannot be cured by weighing the time-reversed trajectories with a different auxiliary dynamics: it is only solved by a more accurate stochastic modelling of the thermostat underlying dissipation.Comment: 6 pages, 3 figure

    Granular Brownian motion with dry friction

    Full text link
    The interplay between Coulomb friction and random excitations is studied experimentally by means of a rotating probe in contact with a stationary granular gas. The granular material is independently fluidized by a vertical shaker, acting as a 'heat bath' for the Brownian-like motion of the probe. Two ball bearings supporting the probe exert nonlinear Coulomb friction upon it. The experimental velocity distribution of the probe, autocorrelation function, and power spectra are compared with the predictions of a linear Boltzmann equation with friction, which is known to simplify in two opposite limits: at high collision frequency, it is mapped to a Fokker-Planck equation with nonlinear friction, whereas at low collision frequency, it is described by a sequence of independent random kicks followed by friction-induced relaxations. Comparison between theory and experiment in these two limits shows good agreement. Deviations are observed at very small velocities, where the real bearings are not well modeled by Coulomb friction.Comment: 7 pages, 6 figure

    PASSATA - Object oriented numerical simulation software for adaptive optics

    Get PDF
    We present the last version of the PyrAmid Simulator Software for Adaptive opTics Arcetri (PASSATA), an IDL and CUDA based object oriented software developed in the Adaptive Optics group of the Arcetri observatory for Monte-Carlo end-to-end adaptive optics simulations. The original aim of this software was to evaluate the performance of a single conjugate adaptive optics system for ground based telescope with a pyramid wavefront sensor. After some years of development, the current version of PASSATA is able to simulate several adaptive optics systems: single conjugate, multi conjugate and ground layer, with Shack Hartmann and Pyramid wavefront sensors. It can simulate from 8m to 40m class telescopes, with diffraction limited and resolved sources at finite or infinite distance from the pupil. The main advantages of this software are the versatility given by the object oriented approach and the speed given by the CUDA implementation of the most computational demanding routines. We describe the software with its last developments and present some examples of application.Comment: 9 pages, 2 figures, 3 tables. SPIE conference Astronomical Telescopes and Instrumentation, 26 June - 01 July 2016, Edinburgh, Scotland, United Kingdo

    Anomalous mobility of a driven active particle in a steady laminar flow

    Full text link
    We study, via extensive numerical simulations, the force-velocity curve of an active particle advected by a steady laminar flow, in the nonlinear response regime. Our model for an active particle relies on a colored noise term that mimics its persistent motion over a time scale Ï„A\tau_A. We find that the active particle dynamics shows non-trivial effects, such as negative differential and absolute mobility (NDM and ANM, respectively). We explore the space of the model parameters and compare the observed behaviors with those obtained for a passive particle (Ï„A=0\tau_A=0) advected by the same laminar flow. Our results show that the phenomena of NDM and ANM are quite robust with respect to the details of the considered noise: in particular for finite Ï„A\tau_A a more complex force-velocity relation can be observed.Comment: 12 pages, 9 figures, paper submitted for the Special Issue of Journal of Physics: Condensed Matter, "Transport in Narrow Channels", Guest Editors P. Malgaretti, G. Oshanin, J. Talbo

    Anomalous force-velocity relation of driven inertial tracers in steady laminar flows

    Full text link
    We study the nonlinear response to an external force of an inertial tracer advected by a two-dimensional incompressible laminar flow and subject to thermal noise. In addition to the driving external field FF, the main parameters in the system are the noise amplitude D0D_0 and the characteristic Stokes time Ï„\tau of the tracer. The relation velocity vs force shows interesting effects, such as negative differential mobility (NDM), namely a non-monotonic behavior of the tracer velocity as a function of the applied force, and absolute negative mobility (ANM), i.e. a net motion against the bias. By extensive numerical simulations, we investigate the phase chart in the parameter space of the model, (Ï„,D0)(\tau,D_0), identifying the regions where NDM, ANM and more common monotonic behaviors of the force-velocity curve are observed.Comment: 5 pages, 13 figures. Contribution to the Topical Issue "Fluids and Structures: Multi-scale coupling and modeling", edited by Luca Biferale, Stefano Guido, Andrea Scagliarini, Federico Toschi. The final publication is available at Springer via http://dx.doi.org/10.1140/epje/i2017-11571-

    Entropy production and coarse-graining in Markov processes

    Full text link
    We study the large time fluctuations of entropy production in Markov processes. In particular, we consider the effect of a coarse-graining procedure which decimates {\em fast states} with respect to a given time threshold. Our results provide strong evidence that entropy production is not directly affected by this decimation, provided that it does not entirely remove loops carrying a net probability current. After the study of some examples of random walks on simple graphs, we apply our analysis to a network model for the kinesin cycle, which is an important biomolecular motor. A tentative general theory of these facts, based on Schnakenberg's network theory, is proposed.Comment: 18 pages, 13 figures, submitted for publicatio
    • …
    corecore