11,447 research outputs found

    A single atom-based generation of Bell states of two cavities

    Get PDF
    A new conditional scheme for generating Bell states of two spatially separated high-Q cavities is reported. Our method is based on the passage of one atom only through the two cavities. A distinctive feature of our treatment is that it incorporates from the very beginning the unavoidable presence of fluctuations in the atom-cavity interaction times. The possibility of successfully implementing our proposal against cavity losses and atomic spontaneous decay is carefully discussed

    Genuine Tripartite Entanglement in a Spin-Star Network at Thermal Equilibrium

    Full text link
    In a recent paper [M. Huber {\it et al}, Phys. Rev. Lett. {\bf 104}, 210501 (2010)] new criteria to find out the presence of multipartite entanglement have been given. We exploit these tools in order to study thermal entanglement in a spin-star network made of three peripheral spins interacting with a central one. Genuine tripartite entanglement is found in a wide range of the relevant parameters. A comparison between predictions based on the new criteria and on the tripartite negativity is also given.Comment: 8 pages, 13 figure

    Reconstruction of Hamiltonians from given time evolutions

    Full text link
    In this paper we propose a systematic method to solve the inverse dynamical problem for a quantum system governed by the von Neumann equation: to find a class of Hamiltonians reproducing a prescribed time evolution of a pure or mixed state of the system. Our approach exploits the equivalence between an action of the group of evolution operators over the state space and an adjoint action of the unitary group over Hermitian matrices. The method is illustrated by two examples involving a pure and a mixed state.Comment: 14 page

    Determination of rotation periods in solar-like stars with irregular sampling: the Gaia case

    Full text link
    We present a study on the determination of rotation periods (P) of solar-like stars from the photometric irregular time-sampling of the ESA Gaia mission, currently scheduled for launch in 2013, taking into account its dependence on ecliptic coordinates. We examine the case of solar-twins as well as thousands of synthetic time-series of solar-like stars rotating faster than the Sun. In the case of solar twins we assume that the Gaia unfiltered photometric passband G will mimic the variability of the total solar irradiance (TSI) as measured by the VIRGO experiment. For stars rotating faster than the Sun, light-curves are simulated using synthetic spectra for the quiet atmosphere, the spots, and the faculae combined by applying semi-empirical relationships relating the level of photospheric magnetic activity to the stellar rotation and the Gaia instrumental response. The capabilities of the Deeming, Lomb-Scargle, and Phase Dispersion Minimisation methods in recovering the correct rotation periods are tested and compared. The false alarm probability (FAP) is computed using Monte Carlo simulations and compared with analytical formulae. The Gaia scanning law makes the rate of correct detection of rotation periods strongly dependent on the ecliptic latitude (beta). We find that for P ~ 1 d, the rate of correct detection increases with ecliptic latitude from 20-30 per cent at beta ~ 0{\deg} to a peak of 70 per cent at beta=45{\deg}, then it abruptly falls below 10 per cent at beta > 45{\deg}. For P > 5 d, the rate of correct detection is quite low and for solar twins is only 5 per cent on average.Comment: 12 pages, 18 figures, accepted by MNRA

    Interaction of bimodal fields with few-level atoms in cavities and traps

    Get PDF
    The spectacular experimental results of the last few years in cavity quantum electrodynamics and trapped ions research has led to very high level laboratory performances. Such a stimulating situation essentially stems from two decisive advancements. The first is the invention of reliable protocols for the manipulation of single atoms. The second is the ability to produce desired bosonic environments on demand. These progresses have led to the possibility of controlling the form of the coupling between individual atoms and an arbitrary number of bosonic modes. As a consequence, fundamental matter-radiation interaction models like, for instance, the JC model and most of its numerous nonlinear multiphoton generalizations, have been realized or simulated in laboratory and their dynamical features have been tested more or less in detail. This topical paper reviews the state of the art of the theoretical investigations and of the experimental observations concerning the dynamical features of the coupling between single few-level atoms and two bosonic modes. In the course of the paper we show that such a configuration provides an excellent platform for investigating various quantum intermode correlation effects tested or testable in the cavity quantum electrodynamics and trapped ion experimental realms. In particular we discuss a mode-mode correlation effect appearing in the dynamics of a two-level atom quadratically coupled to two bosonic modes. This effect, named parity effect, consists in a high sensitivity to the evenness or oddness of the total number of bosonic excitations.Comment: Topical Review. To appear on J. Mod. Op