2,009 research outputs found

    Mission: Impossible (Escape from the Lyman Limit)

    Full text link
    We investigate the intrinsic opacity of high-redshift galaxies to outgoing ionising photons using high-quality photometry of a sample of 27 spectroscopically-identified galaxies of redshift 1.9<z<3.5 in the Hubble Deep Field. Our measurement is based on maximum-likelihood fitting of model galaxy spectral energy distributions-including the effects of intrinsic Lyman-limit absorption and random realizations of intervening Lyman-series and Lyman-limit absorption-to photometry of galaxies from space- and ground-based broad-band images. Our method provides several important advantages over the methods used by previous groups, including most importantly that two-dimensional sky subtraction of faint-galaxy images is more robust than one-dimensional sky subtraction of faint-galaxy spectra. We find at the 3sigma statistical confidence level that on average no more than 4% of the ionising photons escape galaxies of redshift 1.9<z<3.5. This result is consistent with observations of low- and moderate-redshift galaxies but is in direct contradiction to a recent result based on medium-resolution spectroscopy of high-redshift (z~3) galaxies. Dividing our sample in subsamples according to luminosity, intrinsic ultraviolet colour, and redshift, we find no evidence for selection effects that could explain such discrepancy. Even when all systematic effects are included, the data could not realistically accomodate any escape fraction value larger than ~15%.Comment: Accepted for publication in Monthly Notices of the Royal Astronomical Society. 8 pages, 4 b/w figures, MNRAS styl

    Measuring the Radiative Histories of QSOs with the Transverse Proximity Effect

    Full text link
    Since the photons that stream from QSOs alter the ionization state of the gas they traverse, any changes to a QSO's luminosity will produce outward-propagating ionization gradients in the surrounding intergalactic gas. This paper shows that at redshift z~3 the gradients will alter the gas's Lyman-alpha absorption opacity enough to produce a detectable signature in the spectra of faint background galaxies. By obtaining noisy (S:N~4) low-resolution (~7A) spectra of a several dozen background galaxies in an R~20' field surrounding an isotropically radiating 18th magnitude QSO at z=3, it should be possible to detect any order-of-magnitude changes to the QSO's luminosity over the previous 50--100 Myr and to measure the time t_Q since the onset of the QSO's current luminous outburst with an accuracy of ~5 Myr for t_Q<~50 Myr. Smaller fields-of-view are acceptable for shorter QSO lifetimes. The major uncertainty, aside from cosmic variance, will be the shape and orientation of the QSO's ionization cone. This can be determined from the data if the number of background sources is increased by a factor of a few. The method will then provide a direct test of unification models for AGN.Comment: Accepted for publication in the ApJ. 16 page

    Tomography of high-redshift clusters with OSIRIS

    Get PDF
    High-redshift clusters of galaxies are amongst the largest cosmic structures. Their properties and evolution are key ingredients to our understanding of cosmology: to study the growth of structure from the inhomogeneities of the cosmic microwave background; the processes of galaxy formation, evolution, and differentiation; and to measure the cosmological parameters (through their interaction with the geometry of the universe, the age estimates of their component galaxies, or the measurement of the amount of matter locked in their potential wells). However, not much is yet known about the properties of clusters at redshifts of cosmological interest. We propose here a radically new method to study large samples of cluster galaxies using microslits to perform spectroscopy of huge numbers of objects in single fields in a narrow spectral range-chosen to fit an emission line at the cluster redshift. Our objective is to obtain spectroscopy in a very restricted wavelength range (~100 A in width) of several thousands of objects for each single 8x8 square arcmin field. Approximately 100 of them will be identified as cluster emission-line objects and will yield basic measurements of the dynamics and the star formation in the cluster (that figure applies to a cluster at z~0.50, and becomes ~40 and ~20 for clusters at z~0.75 and z~1.00 respectively). This is a pioneering approach that, once proven, will be followed in combination with photometric redshift techniques and applied to other astrophysical problems.Comment: 4 pages, 3 figures. Proceedings of "Science with the GTC", Granada (Spain), February 2002, RMxAA in pres

    The gaseous extent of galaxies and the origin of Lyman alpha absorption systems. IV: Lyman alpha absorbers arising in a galaxy group

    Full text link
    We present new GHRS observations of Lyman alpha absorption lines associated with a group of galaxies towards the QSO 1545+2101. We have identified eight distinct Lyman alpha absorption features in the spectrum of QSO 1545+2101 at a mean redshift of z=0.2648 with a velocity dispersion of 163 km/s. A group of galaxies is detected in the vicinity of this QSO at a mean redshift of z=0.2645 and velocity dispersion 239 km/s. The identification of discrete absorption systems indicates that they arise in clouds of neutral hydrogen rather than in a diffuse intragroup medium. Our analysis suggests that the Lyman alpha absorption lines are associated with individual galaxies in the group, although a one-to-one relationship between absorbers and galaxies is difficult to establish in such a dense environment.Comment: 16 pages, 3 figures. Accepted for publication in Ap

    Spectrophotometric Redshifts. A New Approach to the Reduction of Noisy Spectra and its Application to GRB090423

    Get PDF
    We have developed a new method, close in philosophy to the photometric redshift technique, which can be applied to spectral data of very low signal-to-noise ratio. Using it we intend to measure redshifts while minimising the dangers posed by the usual extraction techniques. GRB afterglows have generally very simple optical spectra over which the separate effects of absorption and reddening in the GRB host, the intergalactic medium, and our own Galaxy are superimposed. We model all these effects over a series of template afterglow spectra to produce a set of clean spectra that reproduce what would reach our telescope. We also model carefully the effects of the telescope-spectrograph combination and the properties of noise in the data, which are then applied on the template spectra. The final templates are compared to the two-dimensional spectral data, and the basic parameters (redshift, spectral index, Hydrogen absorption column) are estimated using statistical tools. We show how our method works by applying it to our data of the NIR afterglow of GRB090423. At z ~ 8.2, this was the most distant object ever observed. We use the spectrum taken by our team with the Telescopio Nazionale Galileo to derive the GRB redshift and its intrinsic neutral Hydrogen column density. Our best fit yields z=8.4^+0.05/-0.03 and N(HI)<5x10^20 cm^-2, but with a highly non-Gaussian uncertainty including the redshift range z [6.7, 8.5] at the 2-sigma confidence level. Our method will be useful to maximise the recovered information from low-quality spectra, particularly when the set of possible spectra is limited or easily parameterisable while at the same time ensuring an adequate confidence analysis.Comment: 6 pages, 6 figures. Accepted for publication in Astronomy and Astrophysic
    • …
    corecore