6,669 research outputs found

    Searching via walking: How to find a marked subgraph of a graph using quantum walks

    Full text link
    We show how a quantum walk can be used to find a marked edge or a marked complete subgraph of a complete graph. We employ a version of a quantum walk, the scattering walk, which lends itself to experimental implementation. The edges are marked by adding elements to them that impart a specific phase shift to the particle as it enters or leaves the edge. If the complete graph has N vertices and the subgraph has K vertices, the particle becomes localized on the subgraph in O(N/K) steps. This leads to a quantum search that is quadratically faster than a corresponding classical search. We show how to implement the quantum walk using a quantum circuit and a quantum oracle, which allows us to specify the resource needed for a quantitative comparison of the efficiency of classical and quantum searches -- the number of oracle calls.Comment: 4 pages, 2 figure

    Quantum searches on highly symmetric graphs

    Get PDF
    We study scattering quantum walks on highly symmetric graphs and use the walks to solve search problems on these graphs. The particle making the walk resides on the edges of the graph, and at each time step scatters at the vertices. All of the vertices have the same scattering properties except for a subset of special vertices. The object of the search is to find a special vertex. A quantum circuit implementation of these walks is presented in which the set of special vertices is specified by a quantum oracle. We consider the complete graph, a complete bipartite graph, and an MM-partite graph. In all cases, the dimension of the Hilbert space in which the time evolution of the walk takes place is small (between three and six), so the walks can be completely analyzed analytically. Such dimensional reduction is due to the fact that these graphs have large automorphism groups. We find the usual quadratic quantum speedups in all cases considered.Comment: 11 pages, 6 figures; major revision

    Continuous-variable blind quantum computation

    Full text link
    Blind quantum computation is a secure delegated quantum computing protocol where Alice who does not have sufficient quantum technology at her disposal delegates her computation to Bob who has a fully-fledged quantum computer in such a way that Bob cannot learn anything about Alice's input, output, and algorithm. Protocols of blind quantum computation have been proposed for several qubit measurement-based computation models, such as the graph state model, the Affleck-Kennedy-Lieb-Tasaki model, and the Raussendorf-Harrington-Goyal topological model. Here, we consider blind quantum computation for the continuous-variable measurement-based model. We show that blind quantum computation is possible for the infinite squeezing case. We also show that the finite squeezing causes no additional problem in the blind setup apart from the one inherent to the continuous-variable measurement-based quantum computation.Comment: 20 pages, 8 figure

    Non-Markovian decoherence in the adiabatic quantum search algorithm

    Get PDF
    We consider an adiabatic quantum algorithm (Grover's search routine) weakly coupled to a rather general environment, i.e., without using the Markov approximation. Markovian errors generally require high-energy excitations (of the reservoir) and tend to destroy the scalability of the adiabatic quantum algorithm. We find that, under appropriate conditions (such as low temperatures), the low-energy (i.e., non-Markovian) modes of the bath are most important. Hence the scalability of the adiabatic quantum algorithm depends on the infra-red behavior of the environment: a reasonably small coupling to the three-dimensional electromagnetic field does not destroy the scaling behavior, whereas phonons or localized degrees of freedom can be problematic. PACS: 03.67.Pp, 03.67.Lx, 03.67.-a, 03.65.Yz

    Searches on star graphs and equivalent oracle problems

    Full text link
    We examine a search on a graph among a number of different kinds of objects (vertices), one of which we want to find. In a standard graph search, all of the vertices are the same, except for one, the marked vertex, and that is the one we wish to find. We examine the case in which the unmarked vertices can be of different types, so the background against which the search is done is not uniform. We find that the search can still be successful, but the probability of success is lower than in the uniform background case, and that probability decreases with the number of types of unmarked vertices. We also show how the graph searches can be rephrased as equivalent oracle problems

    Upper bounds on entangling rates of bipartite Hamiltonians

    Full text link
    We discuss upper bounds on the rate at which unitary evolution governed by a non-local Hamiltonian can generate entanglement in a bipartite system. Given a bipartite Hamiltonian H coupling two finite dimensional particles A and B, the entangling rate is shown to be upper bounded by c*log(d)*norm(H), where d is the smallest dimension of the interacting particles, norm(H) is the operator norm of H, and c is a constant close to 1. Under certain restrictions on the initial state we prove analogous upper bound for the ancilla-assisted entangling rate with a constant c that does not depend upon dimensions of local ancillas. The restriction is that the initial state has at most two distinct Schmidt coefficients (each coefficient may have arbitrarily large multiplicity). Our proof is based on analysis of a mixing rate -- a functional measuring how fast entropy can be produced if one mixes a time-independent state with a state evolving unitarily.Comment: 14 pages, 4 figure

    Universal quantum computation by discontinuous quantum walk

    Full text link
    Quantum walks are the quantum-mechanical analog of random walks, in which a quantum `walker' evolves between initial and final states by traversing the edges of a graph, either in discrete steps from node to node or via continuous evolution under the Hamiltonian furnished by the adjacency matrix of the graph. We present a hybrid scheme for universal quantum computation in which a quantum walker takes discrete steps of continuous evolution. This `discontinuous' quantum walk employs perfect quantum state transfer between two nodes of specific subgraphs chosen to implement a universal gate set, thereby ensuring unitary evolution without requiring the introduction of an ancillary coin space. The run time is linear in the number of simulated qubits and gates. The scheme allows multiple runs of the algorithm to be executed almost simultaneously by starting walkers one timestep apart.Comment: 7 pages, revte

    Universal computation by multi-particle quantum walk

    Full text link
    A quantum walk is a time-homogeneous quantum-mechanical process on a graph defined by analogy to classical random walk. The quantum walker is a particle that moves from a given vertex to adjacent vertices in quantum superposition. Here we consider a generalization of quantum walk to systems with more than one walker. A continuous-time multi-particle quantum walk is generated by a time-independent Hamiltonian with a term corresponding to a single-particle quantum walk for each particle, along with an interaction term. Multi-particle quantum walk includes a broad class of interacting many-body systems such as the Bose-Hubbard model and systems of fermions or distinguishable particles with nearest-neighbor interactions. We show that multi-particle quantum walk is capable of universal quantum computation. Since it is also possible to efficiently simulate a multi-particle quantum walk of the type we consider using a universal quantum computer, this model exactly captures the power of quantum computation. In principle our construction could be used as an architecture for building a scalable quantum computer with no need for time-dependent control

    Structural lineaments in the southern Sierra Nevada, California

    Get PDF
    The author has identified the following significant results. Several lineaments observed in ERTS-1 MSS imagery over the southern Sierra Nevada of California have been studied in the field in an attempt to explain their geologic origins and significance. The lineaments are expressed topographically as alignments of linear valleys, elongate ridges, breaks in slope or combinations of these. Natural outcrop exposures along them are characteristically poor. Two lineaments were found to align with foliated metamorphic roof pendants and screens within granitic country rocks. Along other lineaments, the most consistant correlations were found to be alignments of diabase dikes of Cretaceous age, and younger cataclastic shear zones and minor faults. The location of several Pliocene and Pleistocene volcanic centers at or near lineament intersections suggests that the lineaments may represent zones of crustal weakness which have provided conduits for rising magma
    • ‚Ķ