31,421 research outputs found

    Electrostatic contribution to DNA condensation - application of 'energy minimization' in a simple model in strong Coulomb coupling regime

    Full text link
    Bending of DNA from a straight rod to a circular form in presence of any of the mono-, di-, tri- or tetravalent counterions has been simulated in strong Coulomb coupling environment employing a previously developed energy minimization simulation technique. The inherent characteristics of the simulation technique allow monitoring the required electrostatic contribution to the bending. The curvature of the bending has been found to play crucial roles in facilitating electrostatic attractive potential energy. The total electrostatic potential energy has been found to decrease with bending which indicates that bending a straight DNA to a circular form or to a toroidal form in presence of neutralizing counterions is energetically favorable and practically is a spontaneous phenomenon

    Impact Parameter Dependent Parton Distributions for a Relativistic Composite System

    Full text link
    We investigate the impact parameter dependent parton distributions for a relativistic composite system in light-front framework. We express them in terms of overlaps of light-cone wave functions for a self consistent two-body spin-1/2 state, namely an electron dressed with a photon in QED. The pdfs are distorted in the transverse space for transverse polarization of the state at one loop level.Comment: 4 pages, presented at Lightcone 2004, August 16-20, Amsterdam, Netherland

    Biocatalytic Route to Chiral Precursors of β-Substituted-γ-Amino Acids

    Get PDF
    In this work, we utilized commercial lipases (from Thermomyces lanuginosa, Rhizopus delemar, and Mucor miehei) as biocatalysts for the efficient synthesis of precursors of β-substituted-γ-amino acids. This biocatalytic route provides a practical and efficient synthesis of a wide range of optically active compounds by accepting a number of aliphatic and aromatic 3-substituted-3-cyano-2-(ethoxycarbonyl)propanoic acid ethyl esters (2) without compromising enantioselectivity or yields. The resolution step allows for the nearly quantitative recovery of the unreacted enantiomer of R-(2) as well as the newly formed 3-substituted-3-cyano-2-(ethoxycarbonyl)propanoic acid (3) in high enantio and diastereoselectivity. The use of a facile thermal decarboxylation of (3) in aqueous solution to produce 3-substituted-3-cyanopropanoic acid ethyl esters (4) enable us to prepare a wide range of optically active precursors of β-Substituted-γ-Amino Acids