7 research outputs found

    Rheological and stability aspects of dry and hydrothermally heat treated aleurone-rich wheat milling fraction

    No full text
    Novel aleurone-rich wheat milling fraction developed and produced on industry scale is investigated. The special composition of the novel flour with high protein, dietary fiber and fat content results in a unique combination of the mixing and viscosity properties. Due to the high lipid concentration, the fraction is exposed to fast rancidity. Dry heat (100 °C for 12 min) and hydrothermal treatment processes (96 °C for 6 min with 0–20 L/h steam) were applied on the aleurone-rich flour to modify the technological properties. The chemical, structural changes; the extractability of protein, carbohydrate and phenolic components and the rheological characteristics of the flours were evaluated. The dry treated flour decreased protein and carbohydrate extractability, shortened dough development time, reduced gel strength and enhanced the gelling ability. Hydrothermal treatment caused changes in the phenolic content improved the dough stability and -resistance. Heat treatment processes were able to extend the stability of the flour

    Biochemical markers: efficient tools for the assessment of wheat grain tissue proportions in milling fractions

    No full text
    Correspondance:[email protected] audienceTo produce safe and healthy whole wheat food products, various grain or bran dry fractionation processes have been developed recently. In order to control the quality of the products and to adapt these processes, it is important to be able to monitor the grain tissue proportions in the different milling fractions produced. Accordingly, a quantitative method based on biochemical markers has been developed for the assessment of grain tissue proportions in grain fractions. Grain tissues that were quantified were the outer pericarp, an intermediate layer (including the outer pericarp, the testa and the hyaline layer), the aleurone cell walls, the aleurone cell contents, the endosperm and the germ, for two grain cultivars (Tiger and Crousty). Grain tissues were dissected by hand and analysed. Biochemical markers chosen were ferulic acid trimer, alkylresorcinols, para-coumaric acid, phytic acid, starch and wheat germ agglutinin, for outer pericarp, intermediate layer, aleurone cell walls, aleurone cell contents, endosperm and germ respectively. The results of tissue quantification by hand dissection and by calculation were compared and the sensitivity of the method was regarded as good (mean relative errors of 4% and 8% for Crousty and Tiger outer layers respectively). The impact of the analytical variability (maximum 13% relative error on coarse bran) was also regarded as acceptable. Wheat germ agglutinin seems to be a promising marker of wheat germ: even if the quantification method was not able to quantify the germ proportions in milling fractions, it was able to classify these fractions according to their germ content. The efficiency of this method was tested, by assessing the grain tissue proportions of fractions exhibiting very different compositions such as flour, bran and aleurone-rich fractions obtained from three different grain or bran dry fractionation processes (conventional milling, debranning process, production of aleurone-rich fractions from coarse bran). By calculation of the composition of the different products generated, it was possible to study the distribution of the different tissues among fractions resulting from the different fractionation processes. This quantitative method is thus a useful tool for the monitoring and improvement of processes, and allows the effects of these processes to be understood and their adaption to reach the objective

    Postprandial plasma betaine and other methyl donor-related responses after consumption of minimally processed wheat bran or wheat aleurone, or wheat aleurone incorporated into bread

    No full text
    The bran and particularly the aleurone fraction of wheat are high in betaine and other physiological methyl donors, which may exert beneficial physiological effects. We conducted two randomised, controlled, cross-over postprandial studies to assess and compare plasma betaine and other methyl donor-related responses following the consumption of minimally processed bran and aleurone fractions (study A) and aleurone bread (study B). For both studies, standard pharmacokinetic parameters were derived for betaine, choline, folate, dimethylglycine (DMG), total homocysteine and methionine from plasma samples taken at 0, 0·5, 1, 2 and 3h. In study A (n 14), plasma betaine concentrations were significantly and substantially elevated from 0·5 to 3h following the consumption of both bran and aleurone compared with the control; however, aleurone gave significantly higher responses than bran. Small, but significant, increases were also observed in DMG measures; however, no significant responses were observed in other analytes. In study B (n 13), plasma betaine concentrations were significantly and substantially higher following consumption of the aleurone bread compared with the control bread; small, but significant, increases were also observed in DMG and folate measures in response to consumption of the aleurone bread; however, no significant responses were observed in other analytes. Peak plasma betaine concentrations, which were 1·7-1·8 times the baseline levels, were attained earlier following the consumption of minimally processed aleurone compared with the aleurone bread (time taken to reach peak concentration 1·2 v. 2·1h). These results showed that the consumption of minimally processed wheat bran, and particularly the aleurone fraction, yielded substantial postprandial increases in plasma betaine concentrations. Furthermore, these effects appear to be maintained when aleurone was incorporated into brea

    Bibliographie

    No full text

    Intensive protein synthesis in neurons and phosphorylation of beta-amyloid precursor protein and tau-protein are triggering factors of neuronal amyloidosis and Alzheimer’s disease

    No full text

    Metabolic, antioxidant, nutraceutical, probiotic, and herbal therapies relating to the management of hepatobiliary disorders

    No full text
    corecore