30 research outputs found

    Charge exchange spectroscopy as a fast ion diagnostic on TEXTOR

    Get PDF
    An upgraded charge exchange spectroscopy diagnostic has been taken into operation at the TEXTOR tokamak. The angles of the viewing lines with the toroidal magnetic field are close to the pitch angles at birth of fast ions injected by one of the neutral beam injectors. Using another neutral beam for active spectroscopy, injected counter the direction in which fast ions injected by the first beam are circulating, we can simultaneously measure a fast ion tail on the blue wing of the D-alpha spectrum while the beam emission spectrum is Doppler shifted to the red wing. An analysis combining the two parts of the spectrum offers possibilities to improve the accuracy of the absolute (fast) ion density profiles. Fast beam modulation or passive viewing lines cannot be used for background subtraction on this diagnostic setup and therefore the background has to be modeled and fitted to the data together with a spectral model for the slowing down feature. The analysis of the fast ion D-alpha spectrum obtained with the new diagnostic is discussed

    Feasibility of charge exchange spectroscopy fast helium measurements on ITER

    Get PDF
    The feasibility to measure fast alpha particles using Active Charge Exchange Recombination Spectroscopy (CXRS) on ITER is investigated. Through modelling of the charge exchange spectral line for fast ions together with the expected background emission, the signal-to-noise ratio has been calculated as a function of the diagnostic design parameters. Combining the CXRS data from both the heating and the diagnostic neutral beams on ITER, information on the fast ion energy spectrum up to 1 MeV can be obtained for the parameters of the ITER core CXRS diagnostic design, provided that the signal is binned in 100 keV bins and a time resolution of Isec is used.</p

    Wall reflection modeling for charge exchange recombination spectroscopy (CXRS) measurements on Textor and ITER

    No full text
    Contamination of optical signals by reflections from the tokamak vessel wall is a matter of great concern. For machines such as ITER and future reactors, where the vessel wall will be predominantly metallic, this is potentially a risk factor for quantitative optical emission spectroscopy. This is, in particular, the case when bremsstrahlung continuum radiation from the bulk plasma is used as a common reference light source for the cross-calibration of visible spectroscopy. In this paper the reflected contribution to the continuum level in Textor and ITER has been estimated for the detection channels meant for charge exchange recombination spectroscopy (CXRS). A model assuming diffuse reflection has been developed for the bremsstrahlung which is a much extended source. Based on this model, it is shown that in the case of ITER upper port 3, a wall with a moderate reflectivity of 20% leads to the wall reflected fraction being as high as 55–60% of the weak signals in the edge channels. In contrast, a complete bidirectional reflectance distribution function (BRDF) based model has been developed in order to estimate the reflections from more localized sources like the charge exchange (CX) emission from a neutral beam in tokamaks. The largest signal contamination of ~15% is seen in the core CX channels, where the true CX signal level is much lower than that in the edge channels. Similar values are obtained for Textor also. These results indicate that the contributions from wall reflections may be large enough to significantly distort the overall spectral features of CX data, warranting an analysis at different wavelength

    Feasibility of non-thermal helium measurements with charge exchange spectroscopy on ITER

    No full text
    The use of active charge exchange recombination spectroscopy (CXRS) as a diagnostic for fusion-produced alpha particles on ITER is constrained by the signal-to-noise ratio, which is determined by the intensity of the line of interest, the optical throughput of the diagnostic, the neutral beam penetration, and the intensity of bremsstrahlung radiation. The CX spectral line for fast ions has been modelled together with the expected background emission and we present the signal-to-noise ratios calculated as a function of the diagnostic design parameters. Combining the CXRS data from both the heating and the diagnostic neutral beams on ITER, information on fast ions with energies up to 1 MeV can be obtained for the parameters of the ITER core CXRS diagnostic design. To achieve this, energy binning of the signal is used (100 keV bins or larger), in order to improve the signal-to-noise ratio, with a time resolution of 2 s. The time resolution of the measurement can be improved using a higher throughput spectrometer, but this is ultimately limited by the amount of light from the neutral beam that can be collected. Despite the challenges and the fact that the results are not as optimistic as previously assumed, it is concluded that useful information on fast helium density profiles can be obtained using CXRS on ITER

    Complex spectra in fusion plasmas

    No full text
    The need for quantitative evaluation of complex line emission spectra as observed in hot fusion plasmas initiated a challenging development of sophisticated interpretation tools based on integrating advanced atomic modelling with detailed treatment of the plasma environment. The successful merging of the two worlds has led to routine diagnostic procedures which have contributed enormously to the understanding of underlying plasma processes and also to a wide acceptance of spectroscopy as a reliable diagnostic method. In this paper three characteristic types of spectra of current and continuing interest are presented. The first is that of medium/heavy species with many ionisation stages revealed in survey VUV and XUV spectra. Such species occur as control gases, as wall materials, as ablated heavy species and possible as layered wall dopants for monitoring erosion. The spectra are complex with line-like and quasi-continuum regions and are amenable to advanced 'pattern recognition' methods. The second type is of few electron, highly ionised systems observed as line-of-sight integrated passive emission spectra in the soft x-ray region. They are analysed successfully in terms of plasma parameters through matching of observation with predicted synthetic spectra. Examples used here include highly resolved helium-like emission spectra of argon, iron and titanium observed on the tokamaks TEXTOR and Tore Supra. The third type, and the emphasis of this work, comprises spectra linked to active beam spectroscopy, that is, charge exchange recombination spectroscopy (CXRS) and beam emission spectroscopy (BES). In this case, a complex spectrum is again composed of a (usually) dominating active spectrum and an underlying passive emission spectrum. Its analysis requires modelling of both active and passive features. Examples used here are from the CXRS diagnostic at JET and TEXTOR. They display characteristic features of the main light impurity ions (C+6, He+2, N+7, Ne+10 and Ar+18), as well as that of the bulk plasma ions, H+, D+ and T+. A main conclusion is that spectral complexity is not necessarily negative, but that 'complex structures' can provide a rich source of information on the plasma and its parameters - provided it is matched with integrated analysis - and that the methods can have universal applicability. In the present preparatory phase of the next generation fusion experiment ITER (International Thermonuclear Experimental Reactor) the concepts and expectations of complex spectra and integrated data analysis play an important role in the design and optimisation procedure of the ITER diagnostic assembly
    corecore