5,399 research outputs found
Visual Analysis of Pressure in Football
Modern movement tracking technologies enable acquisition of high quality data about movements of the players and the ball in the course of a football match. However, there is a big difference between the raw data and the insights into team behaviors that analysts would like to gain. To enable such insights, it is necessary first to establish relationships between the concepts characterizing behaviors and what can be extracted from data. This task is challenging since the concepts are not strictly defined. We propose a computational approach to detecting and quantifying the relationships of pressure emerging during a game. Pressure is exerted by defending players upon the ball and the opponents. Pressing behavior of a team consists of multiple instances of pressure exerted by the team members. The extracted pressure relationships can be analyzed in detailed and summarized forms with the use of static and dynamic visualizations and interactive query tools. To support examination of team tactics in different situations, we have designed and implemented a novel interactive visual tool “time mask”. It enables selection of multiple disjoint time intervals in which given conditions are fulfilled. Thus, it is possible to select game situations according to ball possession, ball distance to the goal, time that has passed since the last ball possession change or remaining time before the next change, density of players’ positions, or various other conditions. In response to a query, the analyst receives visual and statistical summaries of the set of selected situations and can thus perform joint analysis of these situations. We give examples of applying the proposed combination of computational, visual, and interactive techniques to real data from games in the German Bundesliga, where the teams actively used pressing in their defense tactics
Effects and Propositions
The quantum logical and quantum information-theoretic traditions have exerted
an especially powerful influence on Bub's thinking about the conceptual
foundations of quantum mechanics. This paper discusses both the quantum logical
and information-theoretic traditions from the point of view of their
representational frameworks. I argue that it is at this level, at the level of
its framework, that the quantum logical tradition has retained its centrality
to Bub's thought. It is further argued that there is implicit in the quantum
information-theoretic tradition a set of ideas that mark a genuinely new
alternative to the framework of quantum logic. These ideas are of considerable
interest for the philosophy of quantum mechanics, a claim which I defend with
an extended discussion of their application to our understanding of the
philosophical significance of the no hidden variable theorem of Kochen and
Specker.Comment: Presented to the 2007 conference, New Directions in the Foundations
of Physic
Nonlinear rheology of colloidal dispersions
Colloidal dispersions are commonly encountered in everyday life and represent
an important class of complex fluid. Of particular significance for many
commercial products and industrial processes is the ability to control and
manipulate the macroscopic flow response of a dispersion by tuning the
microscopic interactions between the constituents. An important step towards
attaining this goal is the development of robust theoretical methods for
predicting from first-principles the rheology and nonequilibrium microstructure
of well defined model systems subject to external flow. In this review we give
an overview of some promising theoretical approaches and the phenomena they
seek to describe, focusing, for simplicity, on systems for which the colloidal
particles interact via strongly repulsive, spherically symmetric interactions.
In presenting the various theories, we will consider first low volume fraction
systems, for which a number of exact results may be derived, before moving on
to consider the intermediate and high volume fraction states which present both
the most interesting physics and the most demanding technical challenges. In
the high volume fraction regime particular emphasis will be given to the
rheology of dynamically arrested states.Comment: Review articl
On quantum coding for ensembles of mixed states
We consider the problem of optimal asymptotically faithful compression for
ensembles of mixed quantum states. Although the optimal rate is unknown, we
prove upper and lower bounds and describe a series of illustrative examples of
compression of mixed states. We also discuss a classical analogue of the
problem.Comment: 23 pages, LaTe
Entanglement of electrons in interacting molecules
Quantum entanglement is a concept commonly used with reference to the
existence of certain correlations in quantum systems that have no classical
interpretation. It is a useful resource to enhance the mutual information of
memory channels or to accelerate some quantum processes as, for example, the
factorization in Shor's Algorithm. Moreover, entanglement is a physical
observable directly measured by the von Neumann entropy of the system. We have
used this concept in order to give a physical meaning to the electron
correlation energy in systems of interacting electrons. The electronic
correlation is not directly observable, since it is defined as the difference
between the exact ground state energy of the many--electrons Schroedinger
equation and the Hartree--Fock energy. We have calculated the correlation
energy and compared with the entanglement, as functions of the nucleus--nucleus
separation using, for the hydrogen molecule, the Configuration Interaction
method. Then, in the same spirit, we have analyzed a dimer of ethylene, which
represents the simplest organic conjugate system, changing the relative
orientation and distance of the molecules, in order to obtain the configuration
corresponding to maximum entanglement.Comment: 15 pages, 7 figures, standard late
interference in the Coulomb dissociation of B
We investigate the effects arising out of the interference in the
Coulomb dissociation of B at beam energies below and around 50 MeV/nucleon.
The theory has been formulated within a first order semiclassical scheme of
Coulomb excitation, in which both the ground state and the continuum state wave
functions of B enter as inputs. We find that the magnitude of the
interference could be large in some cases. However, there are some specific
observables which are free from the effects of the interference,
which is independent of the models used to describe the structure of B.
This will be useful for the analysis of the breakup data in relation to the
extraction of the astrophysical factor .Comment: Revised version to appear in Physical Review
Coulomb and nuclear breakup of B
The cross sections for the (B,Be-) breakup reaction on Ni
and Pb targets at the beam energies of 25.8 MeV and 415 MeV have been
calculated within a one-step prior-form distorted-wave Born approximation. The
relative contributions of Coulomb and nuclear breakup of dipole and quadrupole
multipolarities as well as their interference have been determined. The nuclear
breakup contributions are found to be substantial in the angular distributions
of the Be fragment for angles in the range of 30 - 80 at
25.8 MeV beam energy. The Coulomb-nuclear interference terms make the dipole
cross section larger than that of quadrupole even at this low beam energy.
However, at the incident energy of 415 MeV, these effects are almost negligible
in the angular distributions of the (Be-p) coincidence cross sections at
angles below 4.Comment: Revised version, accepted for publication in Phys. Rev.
Effective interactions between star polymers and colloidal particles
Using monomer-resolved Molecular Dynamics simulations and theoretical
arguments based on the radial dependence of the osmotic pressure in the
interior of a star, we systematically investigate the effective interactions
between hard, colloidal particles and star polymers in a good solvent. The
relevant parameters are the size ratio q between the stars and the colloids, as
well as the number of polymeric arms f (functionality) attached to the common
center of the star. By covering a wide range of q's ranging from zero (star
against a flat wall) up to about 0.75, we establish analytical forms for the
star-colloid interaction which are in excellent agreement with simulation
results. A modified expression for the star-star interaction for low
functionalities, f < 10 is also introduced.Comment: 37 pages, 14 figures, preprint-versio
Unknown Quantum States: The Quantum de Finetti Representation
We present an elementary proof of the quantum de Finetti representation
theorem, a quantum analogue of de Finetti's classical theorem on exchangeable
probability assignments. This contrasts with the original proof of Hudson and
Moody [Z. Wahrschein. verw. Geb. 33, 343 (1976)], which relies on advanced
mathematics and does not share the same potential for generalization. The
classical de Finetti theorem provides an operational definition of the concept
of an unknown probability in Bayesian probability theory, where probabilities
are taken to be degrees of belief instead of objective states of nature. The
quantum de Finetti theorem, in a closely analogous fashion, deals with
exchangeable density-operator assignments and provides an operational
definition of the concept of an ``unknown quantum state'' in quantum-state
tomography. This result is especially important for information-based
interpretations of quantum mechanics, where quantum states, like probabilities,
are taken to be states of knowledge rather than states of nature. We further
demonstrate that the theorem fails for real Hilbert spaces and discuss the
significance of this point.Comment: 30 pages, 2 figure
- …