2,204 research outputs found
Fluctuating parts of nuclear ground state correlation energies
Background: Heavy atomic nuclei are often described using the
Hartree-Fock-Bogoliubov (HFB) method. In principle, this approach takes into
account Pauli effects and pairing correlations while other correlation effects
are mimicked through the use of effective density-dependent interactions.
Purpose: Investigate the influence of higher order correlation effects on
nuclear binding energies using Skyrme's effective interaction.
Methods: A cut-off in relative momenta is introduced in order to remove
ultraviolet divergences caused by the zero-range character of the interaction.
Corrections to binding energies are then calculated using the
quasiparticle-random-phase approximation (QRPA) and second order many-body
perturbation theory (MBPT2).
Result: Contributions to the correlation energies are evaluated for several
isotopic chains and an attempt is made to disentangle which parts give rise to
fluctuations that may be difficult to incorporate on the HFB level. The
dependence of the results on the cut-off is also investigated.
Conclusions: The improved interaction allows explicit summations of
perturbation series which is useful for the description of some nuclear
observables. However, refits of the interaction parameters are needed to obtain
more quantitative results
Calculations of Hubbard U from first-principles
The Hubbard \emph{U} of the \emph{3d} transition metal series as well as
SrVO, YTiO, Ce and Gd has been estimated using a recently proposed
scheme based on the random-phase approximation. The values obtained are
generally in good accord with the values often used in model calculations but
for some cases the estimated values are somewhat smaller than those used in the
literature. We have also calculated the frequency-dependent \emph{U} for some
of the materials. The strong frequency dependence of \emph{U} in some of the
cases considered in this paper suggests that the static value of \emph{U} may
not be the most appropriate one to use in model calculations. We have also made
comparison with the constrained LDA method and found some discrepancies in a
number of cases. We emphasize that our scheme and the constrained LDA method
theoretically ought to give similar results and the discrepancies may be
attributed to technical difficulties in performing calculations based on
currently implemented constrained LDA schemes.Comment: 24 pages, 13 figures; Submitted to Phys. Rev.
The correlation potential in density functional theory at the GW-level: spherical atoms
As part of a project to obtain better optical response functions for nano
materials and other systems with strong excitonic effects we here calculate the
exchange-correlation (XC) potential of density-functional theory (DFT) at a
level of approximation which corresponds to the dynamically- screened-exchange
or GW approximation. In this process we have designed a new numerical method
based on cubic splines which appears to be superior to other techniques
previously applied to the "inverse engineering problem" of DFT, i.e., the
problem of finding an XC potential from a known particle density. The
potentials we obtain do not suffer from unphysical ripple and have, to within a
reasonable accuracy, the correct asymptotic tails outside localized systems.
The XC potential is an important ingredient in finding the particle-conserving
excitation energies in atoms and molecules and our potentials perform better in
this regard as compared to the LDA potential, potentials from GGA:s, and a DFT
potential based on MP2 theory.Comment: 13 pages, 9 figure
Edge states of zigzag bilayer graphite nanoribbons
Electronic structures of the zigzag bilayer graphite nanoribbons(Z-BGNR) with
various ribbon width are studied within the tight binding approximation.
Neglecting the inter-layer hopping amplitude , which is an order of
magnitude smaller than the other inter-layer hopping parameters and
, there exist two fixed Fermi points independent of the
ribbon width with the peculiar energy dispersion near as \ve (k) \sim
\pm (k-k^*)^N. By investigating the edge states of the Z-BGNR, we notice that
the trigonal warping of the bilayer graphene sheets are reflected on in the
edge state structure. With the inclusion of , the above two Fermi
points are not fixed, but drift toward the vicinity of the Dirac point with the
increase of the width as shown by the finite scaling method and the
peculiar dispersions change to the parabolic ones. The edge magnetism of the
Z-BGNR is also examined by solving the half-filled Hubbard Hamiltonian for the
ribbon using the Hartree-Fock approximation. We have shown that within the same
side of the edges, the edge spins are aligned ferromagnetically for the
experimentally relevant set of parameters.Comment: 22 pages, 7 figures; Corrections are added concerning the edge
magnetis
A simple, efficient, and general treatment of the singularities in Hartree-Fock and exact-exchange Kohn-Sham methods for solids
We present a general scheme for treating the integrable singular terms within
exact exchange (EXX) Kohn-Sham or Hartree-Fock (HF) methods for periodic
solids. We show that the singularity corrections for treating these
divergencies depend only on the total number and the positions of k-points and
on the lattice vectors, in particular the unit cell volume, but not on the
particular positions of atoms within the unit cell. The method proposed here to
treat the singularities constitutes a stable, simple to implement, and general
scheme that can be applied to systems with arbitrary lattice parameters within
either the EXX Kohn-Sham or the HF formalism. We apply the singularity
correction to a typical symmetric structure, diamond, and to a more general
structure, trans-polyacetylene. We consider the effect of the singularity
corrections on volume optimisations and k-point convergence. While the
singularity corrections clearly depends on the total number of k-points, it
exhibits a remarkably small dependence upon the choice of the specific
arrangement of the k-points.Comment: 24 pages, 5 Figures, re-submitted to Phys. Rev. B after revision
Electric field response of strongly correlated one-dimensional metals: a Bethe-Ansatz density functional theory study
We present a theoretical study on the response properties to an external
electric field of strongly correlated one-dimensional metals. Our investigation
is based on the recently developed Bethe-Ansatz local density approximation
(BALDA) to the density functional theory formulation of the Hubbard model. This
is capable of describing both Luttinger liquid and Mott-insulator correlations.
The BALDA calculated values for the static linear polarizability are compared
with those obtained by numerically accurate methods, such as exact (Lanczos)
diagonalization and the density matrix renormalization group, over a broad
range of parameters. In general BALDA linear polarizabilities are in good
agreement with the exact results. The response of the exact exchange and
correlation potential is found to point in the same direction of the perturbing
potential. This is well reproduced by the BALDA approach, although the fine
details depend on the specific parameterization for the local approximation.
Finally we provide a numerical proof for the non-locality of the exact exchange
and correlation functional.Comment: 8 pages and 8 figure
GW band structure of InAs and GaAs in the wurtzite phase
We report the first quasiparticle calculations of the newly observed wurtzite
polymorph of InAs and GaAs. The calculations are performed in the GW
approximation using plane waves and pseudopotentials. For comparison we also
report the study of the zinc-blende phase within the same approximations. In
the InAs compound the In 4d electrons play a very important role: whether they
are frozen in the core or not, leads either to a correct or a wrong band
ordering (negative gap) within the Local Density Appproximation (LDA). We have
calculated the GW band structure in both cases. In the first approach, we have
estimated the correction to the pd repulsion calculated within the LDA and
included this effect in the calculation of the GW corrections to the LDA
spectrum. In the second case, we circumvent the negative gap problem by first
using the screened exchange approximation and then calculating the GW
corrections starting from the so obtained eigenvalues and eigenfunctions. This
approach leads to a more realistic band-structure and was also used for GaAs.
For both InAs and GaAs in the wurtzite phase we predict an increase of the
quasiparticle gap with respect to the zinc-blende polytype.Comment: 9 pages, 6 figures, 3 table
Optimized Effective Potential Model for the Double Perovskites Sr2-xYxVMoO6 and Sr2-xYxVTcO6
In attempt to explore half-metallic properties of the double perovskites
Sr2-xYxVMoO6 and Sr2-xYxVTcO6, we construct an effective low-energy model,
which describes the behavior of the t2g-states of these compounds. All
parameters of such model are derived rigorously on the basis of
first-principles electronic structure calculations. In order to solve this
model we employ the optimized effective potential method and treat the
correlation interactions in the random phase approximation. Although
correlation interactions considerably reduce the intraatomic exchange splitting
in comparison with the Hartree-Fock method, this splitting still substantially
exceeds the typical values obtained in the local-spin-density approximation
(LSDA), which alters many predictions based on the LSDA. Our main results are
summarized as follows: (i) all ferromagnetic states are expected to be
half-metallic. However, their energies are generally higher than those of the
ferrimagnetic ordering between V- and Mo/Tc-sites (except Sr2VMoO6); (ii) all
ferrimagnetic states are metallic (except fully insulating Y2VTcO6) and no
half-metallic antiferromagnetism has been found; (iii) moreover, many of the
ferrimagnetic structures appear to be unstable with respect to the spin-spiral
alignment. Thus, the true magnetic ground state of the most of these systems is
expected to be more complex. In addition, we discuss several methodological
issues related to the nonuniqueness of the effective potential for the magnetic
half-metallic and insulating states.Comment: 15 pages, 9 figure
First principles studies of modulated Co/Cu superlattices with strongly and weakly exchange biased Co-monolayers
First-principles calculations have been performed in order to determine
effective exchange integrals between {\it strongly} and {\it weakly}
exchange-coupled Co monolayers in certain modulated periodic
-type superlattices with three non-equivalent Co planes, which
have not yet been studied hitherto. For we find that the two
non-equivalent exchange integrals have opposite signs, i.e.~the strong coupling
is antiferromagnetic and the weak coupling ferromagnetic, and differ for from each other by one order of magnitude. It is shown that the results
depend on the system as a whole and could not be obtained from separate parts.
Finally we suggest that ''spin valve'' systems of such kind should be
considered when trying to obtain good magneto-resistance together with low
switching-fields.Comment: LaTex, 9 pages, including two .eps-figure
- …