17 research outputs found
Revealing the Orbital Composition of Heavy Fermion Quasiparticles in CeRu2Si2
We present a resonant angle-resolved photoemission spectroscopy (ARPES) study of the electronic band structure and heavy fermion quasiparticles in CeRu2Si2. Using light polarization analysis, considerations of the crystal field environment and hybridization between conduction and f electronic states, we identify the d-electronic orbital character of conduction bands crossing the Fermi level. Resonant ARPES spectra suggest that the localized Ce f states hybridize with eg and t2g states around the zone center. In this fashion, we reveal the orbital structure of the heavy fermion quasiparticles in CeRu2Si2 and discuss its implications for metamagnetism and superconductivity in the related compound CeCu2Si2
Uniaxial pressure induced stripe order rotation in La1.88Sr0.12CuO4
Static stripe order is detrimental to superconductivity. Yet, it has been proposed that transverse stripe fluctuations may enhance the inter-stripe Josephson coupling and thus promote superconductivity. Direct experimental studies of stripe dynamics, however, remain difficult. From a strong-coupling perspective, transverse stripe fluctuations are realized in the form of dynamic “kinks”—sideways shifting stripe sections. Here, we show how modest uniaxial pressure tuning reorganizes directional kink alignment. Our starting point is La1.88Sr0.12CuO4 where transverse kink ordering results in a rotation of stripe order away from the crystal axis. Application of mild uniaxial pressure changes the ordering pattern and pins the stripe order to the crystal axis. This reordering occurs at a much weaker pressure than that to detwin the stripe domains and suggests a rather weak transverse stripe stiffness. Weak spatial stiffness and transverse quantum fluctuations are likely key prerequisites for stripes to coexist with superconductivity
Habitat properties are key drivers of Borrelia burgdorferi (s.l.) prevalence in Ixodes ricinus populations of deciduous forest fragments
Background: The tick Ixodes ricinus has considerable impact on the health of humans and other terrestrial animals because it transmits several tick-borne pathogens (TBPs) such as B. burgdorferi (sensu lato), which causes Lyme borreliosis (LB). Small forest patches of agricultural landscapes provide many ecosystem services and also the disservice of LB risk. Biotic interactions and environmental filtering shape tick host communities distinctively between specific regions of Europe, which makes evaluating the dilution effect hypothesis and its influence across various scales challenging. Latitude, macroclimate, landscape and habitat properties drive both hosts and ticks and are comparable metrics across Europe. Therefore, we instead assess these environmental drivers as indicators and determine their respective roles for the prevalence of B. burgdorferi in I. ricinus. Methods: We sampled I. ricinus and measured environmental properties of macroclimate, landscape and habitat quality of forest patches in agricultural landscapes along a European macroclimatic gradient. We used linear mixed models to determine significant drivers and their relative importance for nymphal and adult B. burgdorferi prevalence. We suggest a new prevalence index, which is pool-size independent. Results: During summer months, our prevalence index varied between 0 and 0.4 per forest patch, indicating a low to moderate disservice. Habitat properties exerted a fourfold larger influence on B. burgdorferi prevalence than macroclimate and landscape properties combined. Increasingly available ecotone habitat of focal forest patches diluted and edge density at landscape scale amplified B. burgdorferi prevalence. Indicators of habitat attractiveness for tick hosts (food resources and shelter) were the most important predictors within habitat patches. More diverse and abundant macro- and microhabitat had a diluting effect, as it presumably diversifies the niches for tick-hosts and decreases the probability of contact between ticks and their hosts and hence the transmission likelihood.[br/] Conclusions: Diluting effects of more diverse habitat patches would pose another reason to maintain or restore high biodiversity in forest patches of rural landscapes. We suggest classifying habitat patches by their regulating services as dilution and amplification habitat, which predominantly either decrease or increase B. burgdorferi prevalence at local and landscape scale and hence LB risk. Particular emphasis on promoting LB-diluting properties should be put on the management of those habitats that are frequently used by humans. In the light of these findings, climate change may be of little concern for LB risk at local scales, but this should be evaluated further
Environmental drivers of Ixodes ricinus abundance in forest fragments of rural European landscapes
Background: The castor bean tick (Ixodes ricinus) transmits infectious diseases such as Lyme borreliosis, which constitutes an important ecosystem disservice. Despite many local studies, a comprehensive understanding of the key drivers of tick abundance at the continental scale is still lacking. We analyze a large set of environmental factors as potential drivers of I. ricinus abundance. Our multi-scale study was carried out in deciduous forest fragments dispersed within two contrasting rural landscapes of eight regions, along a macroclimatic gradient stretching from southern France to central Sweden and Estonia. We surveyed the abundance of I. ricinus, plant community composition, forest structure and soil properties and compiled data on landscape structure, macroclimate and habitat properties. We used linear mixed models to analyze patterns and derived the relative importance of the significant drivers. Results: Many drivers had, on their own, either a moderate or small explanatory value for the abundance of I. ricinus, but combined they explained a substantial part of variation. This emphasizes the complex ecology of I. ricinus and the relevance of environmental factors for tick abundance. Macroclimate only explained a small fraction of variation, while properties of macro- and microhabitat, which buffer macroclimate, had a considerable impact on tick abundance. The amount of forest and the composition of the surrounding rural landscape were additionally important drivers of tick abundance. Functional (dispersules) and structural (density of tree and shrub layers) properties of the habitat patch played an important role. Various diversity metrics had only a small relative importance. Ontogenetic tick stages showed pronounced differences in their response. The abundance of nymphs and adults is explained by the preceding stage with a positive relationship, indicating a cumulative effect of drivers. Conclusions: Our findings suggest that the ecosystem disservices of tick-borne diseases, via the abundance of ticks, strongly depends on habitat properties and thus on how humans manage ecosystems from the scale of the microhabitat to the landscape. This study stresses the need to further evaluate the interaction between climate change and ecosystem management on I. ricinus abundance
Quantum Materials Probed by Light and Electron Spectroscopy
As new technologies rely heavily on materials’ properties, the quest for novel tunable electronic and magnetic materials occupies a large part of nowadays research efforts. Most promising materials are quantum materials, which exhibit a wide range of exotic electronic and magnetic phenomena and often show a great sensitivity to external perturbations such as temperature, pressure or chemical doping. At the origin of many of these phenomena lie strong many-body correlations and competition between different energy scales, from which rich phase diagrams with different structural, electronic and magnetic phases emerge. The understanding of the microscopic concepts in these materials relies on the knowledge of the relevant correlations and is one of the greatest efforts in the field of condensed matter physics. This thesis focuses on three different quantum material families that exhibit strong correlations and an unconventional superconducting phase. The experimental study investigates the electronic correlations in phases close to superconductivity, providing insight in energy scales that define the electronic ground state. The first material family are the calcium ruthenates, an archetypal system for the study of spin-orbit coupling effects and the Mott metal-insulator transition. The competition of different energy scales leads to a non-trivial ground state, from which a complex excitation spectrum emerges. This work presents the study of the low-energy spin-orbital excitations in the single and bilayer compound, shedding light on the importance of the coupling between spin and orbital angular momentum.The second system are the high-temperature superconducting La-based cuprates. Until now, the detailed connections between superconductivity and its surrounding phases remain elusive. The resonant inelastic x-ray scattering study presented here investigates the charge order phase and highlights the importance of an energy resolved technique to study weak charge correlations as a function of temperature and hole doping. The connection between the charge order and surrounding phases is investigated and the importance of a momentum dependent electron-phonon coupling is revealed.The third topic is based on the spinel oxide superconductor LiTi2O4. New experimental insights have recently challenged the picture of a conventional s-wave superconductor and provided evidence for an anomalous pairing mechanism. The understanding has been impeded by the lack of direct measurements of the electronic band structure. This work presents an extensive angle-resolved photoemission spectroscopy study, revealing strong correlation effects at a low energy scale
Charge order lock-in by electron-phonon coupling in La1.675Eu0.2Sr0.125CuO4
Charge order is universal to all hole-doped cuprates. Yet, the driving interactions remain an unsolved problem. Electron-electron interaction is widely believed to be essential, whereas the role of electron-phonon interaction is unclear. We report an ultrahigh-resolution resonant inelastic x-ray scattering (RIXS) study of the in-plane bond-stretching phonon mode in stripe-ordered cuprate La1.675Eu0.2Sr0.125CuO4. Phonon softening and lifetime shortening are found around the charge ordering wave vector. In addition to these self-energy effects, the electron-phonon coupling is probed by its proportionality to the RIXS cross section. We find an enhancement of the electron-phonon coupling around the charge-stripe ordering wave vector upon cooling into the low-temperature tetragonal structure phase. These results suggest that, in addition to electronic correlations, electron-phonon coupling contributes substantially to the emergence of long-range charge-stripe order in cuprates
Combined orbital tomography study of multi-configurational molecular adsorbate systems
Molecular reactivity is determined by the energy levels and spatial extent of the frontier orbitals. Orbital tomography based on angle-resolved photoelectron spectroscopy is an elegant method to study the electronic structure of organic adsorbates, however, it is conventionally restricted to systems with one single rotational domain. In this work, we extend orbital tomography to systems with multiple rotational domains. We characterise the hydrogen evolution catalyst Co-pyrphyrin on an Ag(110) substrate and compare it with the empty pyrphyrin ligand. In combination with low-energy electron diffraction and DFT simulations, we fully determine adsorption geometry and both energetics and spatial distributions of the valence electronic states. We find two states close to the Fermi level in Co-pyrphyrin with Co 3 d character that are not present in the empty ligand. In addition, we identify several energetically nearly equivalent adsorption geometries that are important for the understanding of the electronic structure. The ability to disentangle and fully elucidate multi-configurational systems renders orbital tomography much more useful to study realistic catalytic systems.Peer reviewe
Combined orbital tomography study of multi-configurational molecular adsorbate systems
Molecular reactivity is determined by the energy levels and spatial extent of the frontier orbitals. Orbital tomography based on angle-resolved photoelectron spectroscopy is an elegant method to study the electronic structure of organic adsorbates, however, it is conventionally restricted to systems with one single rotational domain. In this work, we extend orbital tomography to systems with multiple rotational domains. We characterise the hydrogen evolution catalyst Co-pyrphyrin on an Ag(110) substrate and compare it with the empty pyrphyrin ligand. In combination with low-energy electron diffraction and DFT simulations, we fully determine adsorption geometry and both energetics and spatial distributions of the valence electronic states. We find two states close to the Fermi level in Co-pyrphyrin with Co 3d character that are not present in the empty ligand. In addition, we identify several energetically nearly equivalent adsorption geometries that are important for the understanding of the electronic structure. The ability to disentangle and fully elucidate multi-configurational systems renders orbital tomography much more useful to study realistic catalytic systems
Charge order lock-in by electron-phonon coupling in La1.675Eu0.25Sr0.125CuO4
Charge order is universal to all hole-doped cuprates. Yet, the driving interactions remain an unsolved problem. Electron-electron interaction is widely believed to be essential, whereas the role of electron-phonon interaction is unclear. We report an ultrahigh-resolution resonant inelastic x-ray scattering (RIXS) study of the in-plane bondstretching phonon mode in stripe-ordered cuprate La1.675Eu0.25Sr0.125CuO4. Phonon softening and lifetime shortening are found around the charge ordering wave vector. In addition to these self-energy effects, the electron-phonon coupling is probed by its proportionality to the RIXS cross section. We find an enhancement of the electron-phonon coupling around the charge-stripe ordering wave vector upon cooling into the low-temperature tetragonal structure phase. These results suggest that, in addition to electronic correlations, electron-phonon coupling contributes substantially to the emergence of long-range charge-stripe order in cuprates