15 research outputs found

    Mouse Protocadherin-1 gene expression is regulated by cigarette smoke exposure in vivo

    Get PDF
    Protocadherin-1 (PCDH1) is a novel susceptibility gene for airway hyperresponsiveness, first identified in families exposed to cigarette smoke and is expressed in bronchial epithelial cells. Here, we asked how mouse Pcdh1 expression is regulated in lung structural cells in vivo under physiological conditions, and in both short-term cigarette smoke exposure models characterized by airway inflammation and hyperresponsiveness and chronic cigarette smoke exposure models. Pcdh1 gene-structure was investigated by Rapid Amplification of cDNA Ends. Pcdh1 mRNA and protein expression was investigated by qRT-PCR, western blotting using isoform-specific antibodies. We observed 87% conservation of the Pcdh1 nucleotide sequence, and 96% conservation of the Pcdh1 protein sequence between men and mice. We identified a novel Pcdh1 isoform encoding only the intracellular signalling motifs. Cigarette smoke exposure for 4 consecutive days markedly reduced Pcdh1 mRNA expression in lung tissue (3 to 4-fold), while neutrophilia and airway hyperresponsiveness was induced. Moreover, Pcdh1 mRNA expression in lung tissue was reduced already 6 hours after an acute cigarette-smoke exposure in mice. Chronic exposure to cigarette smoke induced loss of Pcdh1 protein in lung tissue after 2 months, while Pcdh1 protein levels were no longer reduced after 9 months of cigarette smoke exposure. We conclude that Pcdh1 is highly homologous to human PCDH1, encodes two transmembrane proteins and one intracellular protein, and is regulated by cigarette smoke exposure in vivo

    qcML: an exchange format for quality control metrics from mass spectrometry experiments.

    Get PDF
    Quality control is increasingly recognized as a crucial aspect of mass spectrometry based proteomics. Several recent papers discuss relevant parameters for quality control and present applications to extract these from the instrumental raw data. What has been missing, however, is a standard data exchange format for reporting these performance metrics. We therefore developed the qcML format, an XML-based standard that follows the design principles of the related mzML, mzIdentML, mzQuantML, and TraML standards from the HUPO-PSI (Proteomics Standards Initiative). In addition to the XML format, we also provide tools for the calculation of a wide range of quality metrics as well as a database format and interconversion tools, so that existing LIMS systems can easily add relational storage of the quality control data to their existing schema. We here describe the qcML specification, along with possible use cases and an illustrative example of the subsequent analysis possibilities. All information about qcML is available at http://code.google.com/p/qcml

    In-Depth Characterization of the Staphylococcus aureus Phosphoproteome Reveals New Targets of Stk1

    Get PDF
    Staphylococcus aureus is a major cause of infections worldwide, and infection results in a variety of diseases. As of no surprise, protein phosphorylation is an important game player in signaling cascades and has been shown to be involved in S. aureus virulence. Albeit long neglected, eukaryotic-type serine/threonine kinases in S. aureus have been implicated in this complex signaling cascades. Due to the substoichiometric nature of protein phosphorylation and a lack of suitable analysis tools, the knowledge of these cascades is, however, to date, still limited. Here, were apply an optimized protocol for efficient phosphopeptide enrichment via Fe3+-IMAC followed by LC-MS/MS to get a better understanding of the impact of protein phosphorylation on the complex signaling networks involved in pathogenicity. By profiling a serine/ threonine kinase and phosphatase mutant from a methicillin-resistant S. aureus mutant library, we generated the most comprehensive phosphoproteome data set of S. aureus to date, aiding a better understanding of signaling in bacteria. With the identification of 3800 class I p-sites, we were able to increase the number of identifications by more than 21 times compared with recent literature. In addition, we were able to identify 74 downstream targets of the only reported eukaryotic-type Ser/ Thr kinase of the S. aureus strain USA300, Stk1. This work allowed an extensive analysis of the bacterial phosphoproteome and indicates that Ser/Thr kinase signaling is far more abundant than previously anticipated in S. aureus

    Toward an efficient workflow for the analysis of the human milk peptidome

    No full text
    There is a growing interest for investigating endogenous peptides from human biofluids which may provide yet unknown functional benefits or provide an early indication of disease states as potential biomarkers. A major technical bottleneck in the investigation of endogenous peptides from body fluids, e.g., serum, urine, saliva, and milk, is that each of these fluids seems to require unique workflows for peptide extraction and analysis. Thus, protocols optimized for serum cannot be directly translated to milk. One biofluid that is readily available, but which has not been extensively explored, is human milk, whose analysis could contribute to our understanding of the immune development of the newborn infant. Due to the occurrence of highly abundant lipids, proteins, and saccharides, milk peptidomics requires dedicated sample preparation steps. The aim of this study was to develop a time and cost-efficient workflow for the analysis of the human milk peptidome, for which we compared peptide extraction methodologies and peptide fragmentation methods. A method using strong acid protein precipitation and analysis by collision-induced dissociation fragmentation was found to be superior to all other test methods, allowing us qualitative and quantitative detection of about 4000 endogenous human milk peptides in a total analysis time of just 18 h

    Personalized Proteome Profiles of Healthy and Tumor Human Colon Organoids Reveal Both Individual Diversity and Basic Features of Colorectal Cancer

    No full text
    Diseases at the molecular level are complex and patient dependent, necessitating development of strategies that enable precision treatment to optimize clinical outcomes. Organoid technology has recently been shown to have the potential to recapitulate the in vivo characteristics of the original individual's tissue in a three-dimensional in vitro culture system. Here, we present a quantitative mass-spectrometry-based proteomic analysis and a comparative transcriptomic analysis of human colorectal tumor and healthy organoids derived, in parallel, from seven patients. Although gene and protein signatures can be derived to distinguish the tumor organoid population from healthy organoids, our data clearly reveal that each patient possesses a distinct organoid signature at the proteomic level. We demonstrate that a personalized patient-specific organoid proteome profile can be related to the diagnosis of a patient and with future development contribute to the generation of personalized therapies

    Toward an Optimized Workflow for Middle-Down Proteomics

    No full text
    Mass spectrometry (MS)-based proteomics workflows can crudely be classified into two distinct regimes, targeting either relatively small peptides (i.e., 0.7 kDa < Mw < 3.0 kDa) or small to medium sized intact proteins (i.e., 10 kDa < Mw < 30 kDa), respectively, termed bottom-up and top-down proteomics. Recently, a niche has started to be explored covering the analysis of middle-range peptides (i.e., 3.0 kDa < Mw < 10 kDa), aptly termed middle-down proteomics. Although middle-down proteomics can follow, in principle, a modular workflow similar to that of bottom-up proteomics, we hypothesized that each of these modules would benefit from targeted optimization to improve its overall performance in the analysis of middle-range sized peptides. Hence, to generate middle-range sized peptides from cellular lysates, we explored the use of the proteases Asp-N and Glu-C and a nonenzymatic acid induced cleavage. To increase the depth of the proteome, a strong cation exchange (SCX) separation, carefully tuned to improve the separation of longer peptides, combined with reversed phase-liquid chromatography (RP-LC) using columns packed with material possessing a larger pore size, was used. Finally, after evaluating the combination of potentially beneficial MS settings, we also assessed the peptide fragmentation techniques, including higher-energy collision dissociation (HCD), electron-transfer dissociation (ETD), and electron-transfer combined with higher-energy collision dissociation (EThcD), for characterization of middle-range sized peptides. These combined improvements clearly improve the detection and sequence coverage of middle-range peptides and should guide researchers to explore further how middle-down proteomics may lead to an improved proteome coverage, beneficial for, among other things, the enhanced analysis of (co-occurring) post-translational modifications

    Monitoring Human Milk β-Casein Phosphorylation and O-Glycosylation Over Lactation Reveals Distinct Differences between the Proteome and Endogenous Peptidome

    Get PDF
    Human milk is a vital biofluid containing a myriad of molecular components to ensure an infant's best start at a healthy life. One key component of human milk is β-casein, a protein which is not only a structural constituent of casein micelles but also a source of bioactive, often antimicrobial, peptides contributing to milk's endogenous peptidome. Importantly, post-translational modifications (PTMs) like phosphorylation and glycosylation typically affect the function of proteins and peptides; however, here our understanding of β-casein is critically limited. To uncover the scope of proteoforms and endogenous peptidoforms we utilized mass spectrometry (LC-MS/MS) to achieve in-depth longitudinal profiling of β-casein from human milk, studying two donors across 16 weeks of lactation. We not only observed changes in β-casein's known protein and endogenous peptide phosphorylation, but also in previously unexplored O-glycosylation. This newly discovered PTM of β-casein may be important as it resides on known β-casein-derived antimicrobial peptide sequences

    Monitoring Human Milk β-Casein Phosphorylation and O-Glycosylation Over Lactation Reveals Distinct Differences between the Proteome and Endogenous Peptidome

    No full text
    Human milk is a vital biofluid containing a myriad of molecular components to ensure an infant’s best start at a healthy life. One key component of human milk is β-casein, a protein which is not only a structural constituent of casein micelles but also a source of bioactive, often antimicrobial, peptides contributing to milk’s endogenous peptidome. Importantly, post-translational modifications (PTMs) like phosphorylation and glycosylation typically affect the function of proteins and peptides; however, here our understanding of β-casein is critically limited. To uncover the scope of proteoforms and endogenous peptidoforms we utilized mass spectrometry (LC-MS/MS) to achieve in-depth longitudinal profiling of β-casein from human milk, studying two donors across 16 weeks of lactation. We not only observed changes in β-casein’s known protein and endogenous peptide phosphorylation, but also in previously unexplored O-glycosylation. This newly discovered PTM of β-casein may be important as it resides on known β-casein-derived antimicrobial peptide sequences
    corecore