4,330 research outputs found

    Load-depth sensing of isotropic, linear viscoelastic materials using rigid axisymmetric indenters

    Get PDF
    An indentation experiment involves five variables: indenter shape, material behavior of the substrate, contact size, applied load and indentation depth. Only three variable are known afterwards, namely, indenter shape, plus load and depth as function of time. As the contact size is not measured and the determination of the material properties is the very aim of the test; two equations are needed to obtain a mathematically solvable system. For elastic materials, the contact size can always be eliminated once and for all in favor of the depth; a single relation between load, depth and material properties remains with the latter variable as unknown. For viscoelastic materials where hereditary integrals model the constitutive behavior, the relation between depth and contact size usually depends also on the (time-dependent) properties of the material. Solving the inverse problem, i.e., determining the material properties from the experimental data, therefore needs both equations. Extending Sneddon's analysis of the indentation problem for elastic materials to include viscoelastic materials, the two equations mentioned above are derived. To find the time dependence of the material properties the feasibility of Golden and Graham's method of decomposing hereditary integrals (J.M. Golden and G.A.C. Graham. Boundary value problems in linear viscoelasticity, Springer, 1988) is investigated and applied to a single load-unload process and to sinusoidally driven stationary state indentation processes.Comment: 116 pages, 29 figure

    The dynamical distance and intrinsic structure of the globular cluster omega Centauri

    Get PDF
    We determine the dynamical distance D, inclination i, mass-to-light ratio M/L and the intrinsic orbital structure of the globular cluster omega Cen, by fitting axisymmetric dynamical models to the ground-based proper motions of van Leeuwen et al. and line-of-sight velocities from four independent data-sets. We correct the observed velocities for perspective rotation caused by the space motion of the cluster, and show that the residual solid-body rotation component in the proper motions can be taken out without any modelling other than assuming axisymmetry. This also provides a tight constraint on D tan i. Application of our axisymmetric implementation of Schwarzschild's orbit superposition method to omega Cen reveals no dynamical evidence for a significant radial dependence of M/L. The best-fit dynamical model has a stellar V-band mass-to-light ratio M/L_V = 2.5 +/- 0.1 M_sun/L_sun and an inclination i = 50 +/- 4 degrees, which corresponds to an average intrinsic axial ratio of 0.78 +/- 0.03. The best-fit dynamical distance D = 4.8 +/- 0.3 kpc (distance modulus 13.75 +/- 0.13 mag) is significantly larger than obtained by means of simple spherical or constant-anisotropy axisymmetric dynamical models, and is consistent with the canonical value 5.0 +/- 0.2 kpc obtained by photometric methods. The total mass of the cluster is (2.5 +/- 0.3) x 10^6 M_sun. The best-fit model is close to isotropic inside a radius of about 10 arcmin and becomes increasingly tangentially anisotropic in the outer region, which displays significant mean rotation. This phase-space structure may well be caused by the effects of the tidal field of the Milky Way. The cluster contains a separate disk-like component in the radial range between 1 and 3 arcmin, contributing about 4% to the total mass.Comment: 37 pages (23 figures), accepted for publication in A&A, abstract abridged, for PS and PDF file with full resolution figures, see http://www.strw.leidenuniv.nl/~vdven/oc

    A general basis set algorithm for galactic haloes and discs

    Full text link
    We present a unified approach to (bi-)orthogonal basis sets for gravitating systems. Central to our discussion is the notion of mutual gravitational energy, which gives rise to the self-energy inner product on mass densities. We consider a first-order differential operator that is self-adjoint with respect to this inner product, and prove a general theorem that gives the conditions under which a (bi-)orthogonal basis set arises by repeated application of this differential operator. We then show that these conditions are fulfilled by all the families of analytical basis sets with infinite extent that have been discovered to date. The new theoretical framework turns out to be closely connected to Fourier-Mellin transforms, and it is a powerful tool for constructing general basis sets. We demonstrate this by deriving a basis set for the isochrone model and demonstrating its numerical reliability by reproducing a known result concerning unstable radial modes.Comment: to be published in Astronomy & Astrophysic

    Triaxial orbit-based modelling of the Milky Way Nuclear Star Cluster

    Get PDF
    We construct triaxial dynamical models for the Milky Way nuclear star cluster using Schwarzschild's orbit superposition technique. We fit the stellar kinematic maps presented in Feldmeier et al. (2014). The models are used to constrain the supermassive black hole mass M_BH, dynamical mass-to-light ratio M/L, and the intrinsic shape of the cluster. Our best-fitting model has M_BH = (3.0 +1.1 -1.3)x10^6 M_sun, M/L = (0.90 +0.76 -0.08) M_sun/L_{sun,4.5micron}, and a compression of the cluster along the line-of-sight. Our results are in agreement with the direct measurement of the supermassive black hole mass using the motion of stars on Keplerian orbits. The mass-to-light ratio is consistent with stellar population studies of other galaxies in the mid-infrared. It is possible that we underestimate M_BH and overestimate the cluster's triaxiality due to observational effects. The spatially semi-resolved kinematic data and extinction within the nuclear star cluster bias the observations to the near side of the cluster, and may appear as a compression of the nuclear star cluster along the line-of-sight. We derive a total dynamical mass for the Milky Way nuclear star cluster of M_MWNSC = (2.1 +-0.7)x10^7 M_sun within a sphere with radius r = 2 x r_eff = 8.4 pc. The best-fitting model is tangentially anisotropic in the central r = 0.5-2 pc of the nuclear star cluster, but close to isotropic at larger radii. Our triaxial models are able to recover complex kinematic substructures in the velocity map.Comment: 14 pages, 10 figures. Accepted for publication in MNRA

    Formation and evolution of dwarf early-type galaxies in the Virgo cluster II. Kinematic Scaling Relations

    Get PDF
    We place our sample of 18 Virgo dwarf early-type galaxies (dEs) on the V-K - velocity dispersion, Faber-Jackson, and Fundamental Plane (FP) scaling relations for massive early-type galaxies (Es). We use a generalized velocity dispersion, which includes rotation, to be able to compare the location of both rotationally and pressure supported dEs with those of early and late-type galaxies. We find that dEs seem to bend the Faber-Jackson relation of Es to lower velocity dispersions, being the link between Es and dwarf spheroidal galaxies (dSphs). Regarding the FP relation, we find that dEs are significantly offset with respect to massive hot stellar systems, and re-casting the FP into the so-called kappa-space suggests that this offset is related to dEs having a total mass-to-light ratio higher than Es but still significantly lower than dSph galaxies. Given a stellar mass-to-light ratio based on the measured line indices of dEs, the FP offset allows us to infer that the dark matter fraction within the half light radii of dEs is on average >~ 42% (uncertainties of 17% in the K band and 20% in the V band), fully consistent with an independent estimate in an earlier paper in this series. We also find that dEs in the size-luminosity relation in the near-infrared, like in the optical, are offset from early-type galaxies, but seem to be consistent with late-type galaxies. We thus conclude that the scaling relations show that dEs are different from Es, and that they further strengthen our previous findings that dEs are closer to and likely formed from late-type galaxies.Comment: 14 pages, 9 figures, 2 appendixes. Accepted for publication in A&
    • …
    corecore