4,330 research outputs found
Load-depth sensing of isotropic, linear viscoelastic materials using rigid axisymmetric indenters
An indentation experiment involves five variables: indenter shape, material
behavior of the substrate, contact size, applied load and indentation depth.
Only three variable are known afterwards, namely, indenter shape, plus load and
depth as function of time. As the contact size is not measured and the
determination of the material properties is the very aim of the test; two
equations are needed to obtain a mathematically solvable system.
For elastic materials, the contact size can always be eliminated once and for
all in favor of the depth; a single relation between load, depth and material
properties remains with the latter variable as unknown.
For viscoelastic materials where hereditary integrals model the constitutive
behavior, the relation between depth and contact size usually depends also on
the (time-dependent) properties of the material. Solving the inverse problem,
i.e., determining the material properties from the experimental data, therefore
needs both equations. Extending Sneddon's analysis of the indentation problem
for elastic materials to include viscoelastic materials, the two equations
mentioned above are derived. To find the time dependence of the material
properties the feasibility of Golden and Graham's method of decomposing
hereditary integrals (J.M. Golden and G.A.C. Graham. Boundary value problems in
linear viscoelasticity, Springer, 1988) is investigated and applied to a single
load-unload process and to sinusoidally driven stationary state indentation
processes.Comment: 116 pages, 29 figure
The dynamical distance and intrinsic structure of the globular cluster omega Centauri
We determine the dynamical distance D, inclination i, mass-to-light ratio M/L
and the intrinsic orbital structure of the globular cluster omega Cen, by
fitting axisymmetric dynamical models to the ground-based proper motions of van
Leeuwen et al. and line-of-sight velocities from four independent data-sets. We
correct the observed velocities for perspective rotation caused by the space
motion of the cluster, and show that the residual solid-body rotation component
in the proper motions can be taken out without any modelling other than
assuming axisymmetry. This also provides a tight constraint on D tan i.
Application of our axisymmetric implementation of Schwarzschild's orbit
superposition method to omega Cen reveals no dynamical evidence for a
significant radial dependence of M/L. The best-fit dynamical model has a
stellar V-band mass-to-light ratio M/L_V = 2.5 +/- 0.1 M_sun/L_sun and an
inclination i = 50 +/- 4 degrees, which corresponds to an average intrinsic
axial ratio of 0.78 +/- 0.03. The best-fit dynamical distance D = 4.8 +/- 0.3
kpc (distance modulus 13.75 +/- 0.13 mag) is significantly larger than obtained
by means of simple spherical or constant-anisotropy axisymmetric dynamical
models, and is consistent with the canonical value 5.0 +/- 0.2 kpc obtained by
photometric methods. The total mass of the cluster is (2.5 +/- 0.3) x 10^6
M_sun. The best-fit model is close to isotropic inside a radius of about 10
arcmin and becomes increasingly tangentially anisotropic in the outer region,
which displays significant mean rotation. This phase-space structure may well
be caused by the effects of the tidal field of the Milky Way. The cluster
contains a separate disk-like component in the radial range between 1 and 3
arcmin, contributing about 4% to the total mass.Comment: 37 pages (23 figures), accepted for publication in A&A, abstract
abridged, for PS and PDF file with full resolution figures, see
http://www.strw.leidenuniv.nl/~vdven/oc
A general basis set algorithm for galactic haloes and discs
We present a unified approach to (bi-)orthogonal basis sets for gravitating
systems. Central to our discussion is the notion of mutual gravitational
energy, which gives rise to the self-energy inner product on mass densities. We
consider a first-order differential operator that is self-adjoint with respect
to this inner product, and prove a general theorem that gives the conditions
under which a (bi-)orthogonal basis set arises by repeated application of this
differential operator. We then show that these conditions are fulfilled by all
the families of analytical basis sets with infinite extent that have been
discovered to date. The new theoretical framework turns out to be closely
connected to Fourier-Mellin transforms, and it is a powerful tool for
constructing general basis sets. We demonstrate this by deriving a basis set
for the isochrone model and demonstrating its numerical reliability by
reproducing a known result concerning unstable radial modes.Comment: to be published in Astronomy & Astrophysic
Triaxial orbit-based modelling of the Milky Way Nuclear Star Cluster
We construct triaxial dynamical models for the Milky Way nuclear star cluster
using Schwarzschild's orbit superposition technique. We fit the stellar
kinematic maps presented in Feldmeier et al. (2014). The models are used to
constrain the supermassive black hole mass M_BH, dynamical mass-to-light ratio
M/L, and the intrinsic shape of the cluster. Our best-fitting model has M_BH =
(3.0 +1.1 -1.3)x10^6 M_sun, M/L = (0.90 +0.76 -0.08) M_sun/L_{sun,4.5micron},
and a compression of the cluster along the line-of-sight. Our results are in
agreement with the direct measurement of the supermassive black hole mass using
the motion of stars on Keplerian orbits. The mass-to-light ratio is consistent
with stellar population studies of other galaxies in the mid-infrared. It is
possible that we underestimate M_BH and overestimate the cluster's triaxiality
due to observational effects. The spatially semi-resolved kinematic data and
extinction within the nuclear star cluster bias the observations to the near
side of the cluster, and may appear as a compression of the nuclear star
cluster along the line-of-sight. We derive a total dynamical mass for the Milky
Way nuclear star cluster of M_MWNSC = (2.1 +-0.7)x10^7 M_sun within a sphere
with radius r = 2 x r_eff = 8.4 pc. The best-fitting model is tangentially
anisotropic in the central r = 0.5-2 pc of the nuclear star cluster, but close
to isotropic at larger radii. Our triaxial models are able to recover complex
kinematic substructures in the velocity map.Comment: 14 pages, 10 figures. Accepted for publication in MNRA
Formation and evolution of dwarf early-type galaxies in the Virgo cluster II. Kinematic Scaling Relations
We place our sample of 18 Virgo dwarf early-type galaxies (dEs) on the V-K -
velocity dispersion, Faber-Jackson, and Fundamental Plane (FP) scaling
relations for massive early-type galaxies (Es). We use a generalized velocity
dispersion, which includes rotation, to be able to compare the location of both
rotationally and pressure supported dEs with those of early and late-type
galaxies. We find that dEs seem to bend the Faber-Jackson relation of Es to
lower velocity dispersions, being the link between Es and dwarf spheroidal
galaxies (dSphs). Regarding the FP relation, we find that dEs are significantly
offset with respect to massive hot stellar systems, and re-casting the FP into
the so-called kappa-space suggests that this offset is related to dEs having a
total mass-to-light ratio higher than Es but still significantly lower than
dSph galaxies. Given a stellar mass-to-light ratio based on the measured line
indices of dEs, the FP offset allows us to infer that the dark matter fraction
within the half light radii of dEs is on average >~ 42% (uncertainties of 17%
in the K band and 20% in the V band), fully consistent with an independent
estimate in an earlier paper in this series. We also find that dEs in the
size-luminosity relation in the near-infrared, like in the optical, are offset
from early-type galaxies, but seem to be consistent with late-type galaxies. We
thus conclude that the scaling relations show that dEs are different from Es,
and that they further strengthen our previous findings that dEs are closer to
and likely formed from late-type galaxies.Comment: 14 pages, 9 figures, 2 appendixes. Accepted for publication in A&
- …