205 research outputs found

    A large eddy simulation model for two-way coupled particle-laden turbulent flows

    Full text link
    In this paper we propose a new modeling framework for large eddy simulations (LES) of particle-laden turbulent flows that captures the interaction between the particle and fluid phase on both the resolved and subgrid-scales. Unlike the vast majority of existing subgrid-scale models, the proposed framework does not only account for the influence of the sugrid-scale velocity on the particle acceleration but also considers the effect of the particles on the turbulent fluid flow. This includes the turbulence modulation of the subgrid-scales by the particles, which is taken into account by the modeled subgrid-scale stress tensor, and the effect of the unresolved particle motion on the resolved flow scales. Our new modeling framework combines a recently proposed model for enriching the resolved fluid velocity with a subgrid-scale component, with the solution of a transport equation for the subgrid-scale kinetic energy. We observe very good agreement of the particle pair separation and particle clustering compared to the corresponding direct numerical simulation (DNS). Furthermore, we show that the change of subgrid-scale kinetic energy induced by the particles can be captured by the proposed modeling framework

    A hybrid immersed boundary method for dense particle-laden flows

    Full text link
    A novel smooth immersed boundary method (IBM) based on a direct-forcing formulation is proposed to simulate incompressible dense particle-laden flows. This IBM relies on a regularization of the transfer function between the Eulerian grid points (to discretise the fluid governing equations) and Lagrangian markers (to represent the particle surface) to fulfill the no-slip condition at the surfaces of the particles, allowing both symmetrical and non-symmetrical interpolation and spreading supports to be used. This enables that local source term contributions to the Eulerian grid, accounting for the boundary condition enforced at a Lagrangian marker on the surface of a particle, can be present on the inside of the particle only when this is beneficial, for instance when the Lagrangian marker is near another particle surface or near a domain boundary. However, when the Lagrangian marker is not near another particle surface or a domain boundary, the interpolation and spreading operators are locally symmetrical, meaning a ``classic'' IBM scheme is adopted. This approach, named hybrid IBM (HyBM), is validated with a number of test-cases from the literature. These results show that the HyBM achieves more accurate results compared to a classical IBM framework, especially at coarser mesh resolutions, when there are Lagrangian markers close to a particle surface or a domain wall

    Conservative finite-volume framework and pressure-based algorithm for flows of incompressible, ideal-gas and real-gas fluids at all speeds

    Full text link
    A conservative finite-volume framework, based on a collocated variable arrangement, for the simulation of flows at all speeds, applicable to incompressible, ideal-gas and real-gas fluids is proposed in conjunction with a fully-coupled pressure-based algorithm. The applied conservative discretisation and implementation of the governing conservation laws as well as the definition of the fluxes using a momentum-weighted interpolation are identical for incompressible and compressible fluids, and are suitable for complex geometries represented by unstructured meshes. Incompressible fluids are described by predefined constant fluid properties, while the properties of compressible fluids are described by the Noble-Abel-stiffened-gas model, with the definitions of density and specific static enthalpy of both incompressible and compressible fluids combined in a unified thermodynamic closure model. The discretised governing conservation laws are solved in a single linear system of equations for pressure, velocity and temperature. Together, the conservative finite-volume discretisation, the unified thermodynamic closure model and the pressure-based algorithm yield a conceptually simple, but versatile, numerical framework. The proposed numerical framework is validated thoroughly using a broad variety of test-cases, with Mach numbers ranging from 0 to 239, including viscous flows of incompressible fluids as well as the propagation of acoustic waves and transiently evolving supersonic flows with shock waves in ideal-gas and real-gas fluids. These results demonstrate the accuracy, robustness and the convergence, as well as the conservation of mass and energy, of the numerical framework for flows of incompressible and compressible fluids at all speeds, on structured and unstructured meshes

    Drag, lift and torque correlations for axi-symmetric non-spherical particles in locally non-uniform flows

    Full text link
    This paper derives new correlations to predict the drag, lift and torque coefficients of axi-symmetric non-spherical rod-like particles for several fluid flow regimes and velocity profiles. The fluid velocity profiles considered are locally uniform flow and locally linear shear flow. The novel correlations for the drag, lift and torque coefficients depend on the particle Reynolds number \Rep, the orientation of the particle with respect to the main fluid direction θ\theta, the aspect ratio of the rod-like particle α\alpha, and the dimensionless local shear rate G~\tilde{G}. The effect of the linear shear flow on the hydrodynamic forces is modeled as an additional component for the resultant of forces acting on a particle in a locally uniform flow, hence the independent expressions for the drag, lift and torque coefficients of axi-symmetric particles in a locally uniform flow are also provided in this work. The data provided to fit the coefficient in the new correlation are generated using available analytical expressions in the viscous regime, and performing direct numerical simulations (DNS) of the flow past the axi-symmetric particles at finite particle Reynolds number. The DNS are performed using the direct-forcing immersed boundary method. The coefficients in the proposed drag, lift and torque correlations are determined with a high degree of accuracy, where the mean error in the prediction lies below 2%2\% for the locally uniform flow correlations, and below 1.67%1.67\%, 5.35%5.35\%, 6.78%6.78\% for the correlations accounting for the change in the drag, lift, and torque coefficients in case of a linear shear flow, respectively. The proposed correlations for the drag, lift and torque coefficients can be used in large-scale simulations performed in the Eulerian-Lagrangian framework with locally uniform and non-uniform flows

    Estimation of curvature from volume fractions using parabolic reconstruction on two-dimensional unstructured meshes (Supporting data)

    Get PDF
    This data accompanies the paper "Estimation of curvature from volume fractions using parabolic reconstruction on two-dimensional unstructured meshes", published in Journal of Computational Physics (2017). The document "supportingdata.pdf" gives a description of the data provided in the txt-files

    Simulating interfacial flows: a farewell to planes

    Full text link
    Over the past decades, the volume-of-fluid (VOF) method has been the method of choice for simulating atomization processes, owing to its unique ability to discretely conserve mass. Current state-of-the-art VOF methods, however, rely on the piecewise-linear interface calculation (PLIC) to represent the interface used when calculating advection fluxes. This renders the estimated curvature of the transported interface zeroth-order accurate at best, adversely impacting the simulation of surface-tension-driven flows. In the past few years, there have been several attempts at using piecewise-parabolic interface approximations instead of piecewise-linear ones for computing advection fluxes, albeit all limited to two-dimensional cases or not inherently mass conservative. In this contribution, we present our most recent work on three-dimensional piecewise-parabolic interface reconstruction and apply it in the context of the VOF method. As a result of increasing the order of the interface representation, the reconstruction of the interface and the estimation of its curvature now become a single step instead of two separate ones. The performance of this new approach is assessed both in terms of accuracy and stability and compared to the classical PLIC-VOF approach on a range of canonical test-cases and cases of surface-tension-driven instabilities

    On the kinetics of thermal oxidation of the thermographic phosphor BaMgAL10O17:Eu

    Get PDF
    Decreased photoluminescence of the phosphor BaMgAL10O17:Eu due to oxidation of the europium dopant at high temperatures has been a subject of study for many years in relation to its use in lighting applications. However, understanding of the underlying effects that cause this reduction in photoluminescence remains incomplete and some of the mechanisms proposed in the literature are contradictory. Recent use of this phosphor as a thermal history sensor has extended the range of exposure conditions normally investigated in lighting applications to higher temperatures and multiple exposure times. The kinetics of the process were investigated by means of spectroscopy and material characterisation techniques. It was found that changes in the luminescence are the result of two simultaneous processes: the oxidation of Eu2+ ions (through a process of diffusion) and a phase transition. The level of degradation of the phosphor is suggested to follow the Kolmogorov-Johnson-Mehl-Avrami (KJMA) model above 900 °C and thus can be predicted with knowledge of the exposure time and temperature. This is useful in applications of the phosphor as a temperature sensor

    Phase proper orthogonal decomposition of non-stationary turbulent flow

    Full text link
    A phase proper orthogonal decomposition (Phase POD) method is demonstrated, utilizing phase averaging for the decomposition of spatio-temporal behaviour of statistically non-stationary turbulent flows in an optimized manner. The proposed Phase POD method is herein applied to a periodically forced statistically non-stationary lid-driven cavity flow, implemented using the snapshot proper orthogonal decomposition algorithm. Space-phase modes are extracted to describe the dynamics of the chaotic flow, in which four central flow patterns are identified for describing the evolution of the energetic structures as a function of phase. The modal building blocks of the energy transport equation are demonstrated as a function of the phase. The triadic interaction term can here be interpreted as the convective transport of bi-modal interactions. Non-local energy transfer is observed as a result of the non-stationarity of the dynamical processes inducing triadic interactions spanning across a wide range of mode numbers

    EXPERIMENTS AND MODELLING OF MICRO-JET ASSISTED FLUIDIZATION OF NANOPARTICLES

    Get PDF
    The fluidization of nanoparticle agglomerates can be largely improved by using downward pointing micronozzles, creating a high-velocity jet, as experimentally shown. By discrete particle simulations – treating the agglomerates as single particles – we show that the main reason is probably the reduction of the agglomerate size by agglomerate-agglomerate collisions
    corecore