253 research outputs found

    ROSAT HRI Observations of the Crab Pulsar: An Improved Temperature upper limit for PSR 0531+21

    Get PDF
    ROSAT HRI observations have been used to determine an upper limit of the Crab pulsar surface temperature from the off-pulse count rate. For a neutron star mass of 1.4 \Mo and a radius of 10 km as well as the standard distance and interstellar column density, the redshifted temperature upper limit is\/ Ts1.55×106T_s^\infty \le 1.55\times 10^6 K (3σ)(3\sigma). This is the lowest temperature upper limit obtained for the Crab pulsar so far. Slightly different values for TsT_s^\infty are computed for the various neutron star models available in the literature, reflecting the difference in the equation of state.Comment: 5 pages, uuencoded postscript, to be published in the Proceedings of the NATO Advanced Study Insitute on "Lives of the Neutron Stars", ed. A. Alpar, U. Kiziloglu and J. van Paradijs ( Kluwer, Dordrecht, 1995 )

    Toward safer thanatopraxy cares: formaldehyde-releasers use.

    Get PDF
    Human cadavers constitute very useful educational tools to teach anatomy in medical scholarship and related disciplines such as physiology, for example. However, as biological material, human body is subjected to decay. Thanatopraxy cares such as embalming have been developed to slow down and inhibit this decay, but the formula used for the preservation fluids are mainly formaldehyde (FA)-based. Very recently, other formulas were developed in order to replace FA, and to avoid its toxicity leading to important environmental and professional exposure concerns. However, these alternative FA-free fluids are still not validated or commercialized, and their efficiency is still under discussion. In this context, the use of FA-releasing substances, already used in the cosmetics industry, may offer interesting alternatives in order to reduce professional exposures to FA. Simultaneously, the preservation of the body is still guaranteed by FA generated over time from FA-releasers. The aim of this review is to revaluate the use of FA in thanatopraxy cares, to present its benefits and disadvantages, and finally to propose an alternative to reduce FA professional exposure during thanatopraxy cares thanks to FA-releasers use

    Peptide exchange on MHC-I by TAPBPR is driven by a negative allostery release cycle.

    Get PDF
    Chaperones TAPBPR and tapasin associate with class I major histocompatibility complexes (MHC-I) to promote optimization (editing) of peptide cargo. Here, we use solution NMR to investigate the mechanism of peptide exchange. We identify TAPBPR-induced conformational changes on conserved MHC-I molecular surfaces, consistent with our independently determined X-ray structure of the complex. Dynamics present in the empty MHC-I are stabilized by TAPBPR and become progressively dampened with increasing peptide occupancy. Incoming peptides are recognized according to the global stability of the final pMHC-I product and anneal in a native-like conformation to be edited by TAPBPR. Our results demonstrate an inverse relationship between MHC-I peptide occupancy and TAPBPR binding affinity, wherein the lifetime and structural features of transiently bound peptides control the regulation of a conformational switch located near the TAPBPR binding site, which triggers TAPBPR release. These results suggest a similar mechanism for the function of tapasin in the peptide-loading complex

    Tissue-specific suppression of thyroid hormone signaling in various mouse models of aging

    Get PDF
    DNA damage contributes to the process of aging, as underscored by premature aging syndromes caused by defective DNA repair. Thyroid state changes during aging, but underlying mechanisms remain elusive. Since thyroid hormone (TH) is a key regulator of metabolism, changes in TH signaling have widespread effects. Here, we reveal a significant common transcriptomic signature in livers from hypothyroid mice, DNA repair-deficient mice with severe (Csbm/m/Xpa-/-) or intermediate (Ercc1-/Δ-7) progeria and naturally aged mice. A strong induction of TH-inactivating deiodinase D3 and decrease of TH-activating D1 activities are observed in Csbm/m/Xpa-/- livers. Similar findings are noticed in Ercc1-/Δ-7, in naturally aged animals and in wild-type mice exposed to a chronic subtoxic dose of DNAdamaging agents. In contrast, TH signaling in muscle, heart and brain appears unaltered. These data show a strong suppression of TH signaling in specific peripheral organs in premature and normal aging, probably lowering metabolism, while other tissues appear to preserve metabolism. D3-mediated TH inactivation is unexpected, given its expression mainly in fetal tissues. Our studies highlight the importance of DNA damage as the underlying mechanism of changes in thyroid state. Tissue-specific regulation of deiodinase activities, ensuring diminished TH signaling, may contribute importantly to the protective metabolic response in aging

    Multiorder coherent Raman scattering of a quantum probe field

    Full text link
    We study the multiorder coherent Raman scattering of a quantum probe field in a far-off-resonance medium with a prepared coherence. Under the conditions of negligible dispersion and limited bandwidth, we derive a Bessel-function solution for the sideband field operators. We analytically and numerically calculate various quantum statistical characteristics of the sideband fields. We show that the multiorder coherent Raman process can replicate the statistical properties of a single-mode quantum probe field into a broad comb of generated Raman sidebands. We also study the mixing and modulation of photon statistical properties in the case of two-mode input. We show that the prepared Raman coherence and the medium length can be used as control parameters to switch a sideband field from one type of photon statistics to another type, or from a non-squeezed state to a squeezed state and vice versa.Comment: 12 pages, 7 figures, to be published in Phys. Rev.

    Effective area calibration of the Reflection Grating Spectrometers of XMM-Newton. I. X-ray spectroscopy of the Crab nebula

    Full text link
    The Crab nebula and pulsar have been widely used as a calibration source for X-ray instruments. The in-flight effective area calibration of the Reflection Grating Spectrometers (RGS) of XMM-Newton depend upon the availability of reliable calibration sources. We investigate how the absolute effective area calibration of RGS can be obtained using Crab as a standard candle. We have analysed RGS observations of the Crab using different instrument configurations and spatial offsets, and made use of previous determinations of the continuum spectrum of the nebula plus pulsar. Due to the high spectral resolution of the RGS, we resolve the main absorption edges and detect the strong 1s-2p absorption lines of neutral oxygen. We get an excellent fit to the Crab spectrum using this fixed continuum and the absorption spectrum determined by RGS. We get accurate column densities for the neutral atoms of H, N, O, Ne, Mg, and Fe, as well as a clear detection of Fe II and firm upper limits for other ions. Our data are in good agreement with earlier optical and UV spectroscopic measurements of some of these ions. We find solar abundances for N and O, while Ne is overabundant by a factor of 1.7 and Fe is underabundant by a factor of 0.8. We confirm that there is less dust in the line of sight compared to the prediction based on the absorption column. Our spectra suggest a more prominent role of ferric iron in the dust compared to ferrous iron. Our high-resolution observations confirm that Crab can be used as an X-ray calibration source. RGS spectra have determined the absorption spectrum towards Crab with unprecedented detail.Comment: 23 pages, 15 figures, 2 appendices, accepted for publication in Astronomy & Astrophysics, main journa

    Magnetic fields in supernova remnants and pulsar-wind nebulae

    Full text link
    We review the observations of supernova remnants (SNRs) and pulsar-wind nebulae (PWNe) that give information on the strength and orientation of magnetic fields. Radio polarimetry gives the degree of order of magnetic fields, and the orientation of the ordered component. Many young shell supernova remnants show evidence for synchrotron X-ray emission. The spatial analysis of this emission suggests that magnetic fields are amplified by one to two orders of magnitude in strong shocks. Detection of several remnants in TeV gamma rays implies a lower limit on the magnetic-field strength (or a measurement, if the emission process is inverse-Compton upscattering of cosmic microwave background photons). Upper limits to GeV emission similarly provide lower limits on magnetic-field strengths. In the historical shell remnants, lower limits on B range from 25 to 1000 microGauss. Two remnants show variability of synchrotron X-ray emission with a timescale of years. If this timescale is the electron-acceleration or radiative loss timescale, magnetic fields of order 1 mG are also implied. In pulsar-wind nebulae, equipartition arguments and dynamical modeling can be used to infer magnetic-field strengths anywhere from about 5 microGauss to 1 mG. Polarized fractions are considerably higher than in SNRs, ranging to 50 or 60% in some cases; magnetic-field geometries often suggest a toroidal structure around the pulsar, but this is not universal. Viewing-angle effects undoubtedly play a role. MHD models of radio emission in shell SNRs show that different orientations of upstream magnetic field, and different assumptions about electron acceleration, predict different radio morphology. In the remnant of SN 1006, such comparisons imply a magnetic-field orientation connecting the bright limbs, with a non-negligible gradient of its strength across the remnant.Comment: 20 pages, 24 figures; to be published in SpSciRev. Minor wording change in Abstrac

    Low-mass X-ray binaries in the bulge of the Milky Way

    Full text link
    We study the population of low-mass X-ray binaries (LMXBs) in the Galactic bulge using the deep survey of this region by the IBIS telescope aboard the INTEGRAL observatory. Thanks to the increased sensitivity with respect to previous surveys of this field, we succeeded to probe the luminosity function (LF) of LMXBs down to ~7e34 erg/sec in the 17-60keV energy band. The slope dlog N/dlog L=-0.96+/0.20 measured in the 1e35-1e37 erg/sec range confirms that the LMXB LF flattens below L_x<1e37 erg/sec with respect to higher luminosities. We discuss the origin of the observed LF flattening. We demonstrate that the spatial distribution of persistent LMXBs in the Galactic Center/Galactic bulge region is consistent with a model of stellar mass distribution that includes the nuclear stellar disk component in the innermost degree of the Galaxy. The spatial distribution of transient LMXBs detected in the Galactic Center region indicates an increased fraction of transient sources in the innermost degree of the Galaxy with respect to outer regions.Comment: 10 pages, 8 figures, Submitted to A&

    Radio observations of Circinus X-1 over a complete orbit at an historically faint epoch

    Full text link
    We present results from the first radio observations of a complete orbit (~ 17 days) of the neutron star X-ray binary Circinus X-1 using the Australia Telescope Compact Array Broadband Backend, taken while the system was in an historically faint state. We have captured the rapid rise and decline of a periastron passage flare, with flux densities for 9 days prior to the event stable at ~ 1 mJy at 5.5 GHz and ~ 0.5 mJy at 9 GHz. The highest flux densities of 43.0 +/- 0.5 mJy at 5.5 GHz and 29.9 +/- 0.6 mJy at 9 GHz were measured during the flare's decline (MJD 55206.69) which continues towards pre-flare flux densities over the following 6 days. Imaging of pre-flare data reveals steady structure including two stable components within 15 arc-seconds of the core which we believe may be persistent emission regions within the system's outflows, one of which is likely associated with the system's counter-jet. Unlike past observations carried out in the system's brighter epochs, we observe no significant structural variations within \approx 3 arc-seconds of the core's position. Model subtraction and difference mapping provide evidence for variations slightly further from the core: up to 5" away. If related to the observed core flare, then these variations suggest very high outflow velocities with {\Gamma} > 35, though this can be reduced significantly if we invoke phase delays of at least one orbital period. Interestingly, the strongest structural variations appear to the north west of the core, opposite to the strongest arcsec-scale emission historically. We discuss the implications of this behaviour, including the possibility of precession or a kinked approaching jet.Comment: Accepted for publication in MNRA

    The group II intron ribonucleoprotein precursor is a large, loosely packed structure

    Get PDF
    Group II self-splicing introns are phylogenetically diverse retroelements that are widely held to be the ancestors of spliceosomal introns and retrotransposons that insert into DNA. Folding of group II intron RNA is often guided by an intron-encoded protein to form a catalytically active ribonucleoprotein (RNP) complex that plays a key role in the activity of the intron. To date, possible structural differences between the intron RNP in its precursor and spliced forms remain unexplored. In this work, we have trapped the native Lactococcus lactis group II intron RNP complex in its precursor form, by deleting the adenosine nucleophile that initiates splicing. Sedimentation velocity, size-exclusion chromatography and cryo-electron microscopy provide the first glimpse of the intron RNP precursor as a large, loosely packed structure. The dimensions contrast with those of compact spliced introns, implying that the RNP undergoes a dramatic conformational change to achieve the catalytically active state
    corecore