4 research outputs found

    EGF-induced PIP2 hydrolysis releases and activates cofilin locally in carcinoma cells

    Get PDF
    Lamellipodial protrusion and directional migration of carcinoma cells towards chemoattractants, such as epidermal growth factor (EGF), depend upon the spatial and temporal regulation of actin cytoskeleton by actin-binding proteins (ABPs). It is generally hypothesized that the activity of many ABPs are temporally and spatially regulated by PIP2; however, this is mainly based on in vitro–binding and structural studies, and generally in vivo evidence is lacking. Here, we provide the first in vivo data that directly visualize the spatial and temporal regulation of cofilin by PIP2 in living cells. We show that EGF induces a rapid loss of PIP2 through PLC activity, resulting in a release and activation of a membrane-bound pool of cofilin. Upon release, we find that cofilin binds to and severs F-actin, which is coincident with actin polymerization and lamellipod formation. Moreover, our data provide evidence for how PLC is involved in the formation of protrusions in breast carcinoma cells during chemotaxis and metastasis towards EGF

    An improved model to study tumor cell autonomous metastasis programs using MTLn3 cells and the Rag2−/− γc−/− mouse

    Get PDF
    The occurrence of metastases is a critical determinant of the prognosis for breast cancer patients. Effective treatment of breast cancer metastases is hampered by a poor understanding of the mechanisms involved in the formation of these secondary tumor deposits. To study the processes of metastasis, valid in vivo tumor metastasis models are required. Here, we show that increased expression of the EGF receptor in the MTLn3 rat mammary tumor cell-line is essential for efficient lung metastasis formation in the Rag mouse model. EGFR expression resulted in delayed orthotopic tumor growth but at the same time strongly enhanced intravasation and lung metastasis. Previously, we demonstrated the critical role of NK cells in a lung metastasis model using MTLn3 cells in syngenic F344 rats. However, this model is incompatible with human EGFR. Using the highly metastatic EGFR-overexpressing MTLn3 cell-line, we report that only Rag2−/−γc−/− mice, which lack NK cells, allow efficient lung metastasis from primary tumors in the mammary gland. In contrast, in nude and SCID mice, the remaining innate immune cells reduce MTLn3 lung metastasis formation. Furthermore, we confirm this finding with the orthotopic transplantation of the 4T1 mouse mammary tumor cell-line. Thus, we have established an improved in vivo model using a Rag2−/− γc−/− mouse strain together with MTLn3 cells that have increased levels of the EGF receptor, which enables us to study EGFR-dependent tumor cell autonomous mechanisms underlying lung metastasis formation. This improved model can be used for drug target validation and development of new therapeutic strategies against breast cancer metastasis formation

    Paxillin serine 178 phosphorylation in control of cell migration and metastasis formation through regulation of EGFR expression in breast cancer

    No full text
    Aim: Paxillin is a well-known multidomain scaffold protein that is involved in the regulation of cell-matrix adhesion dynamics, a process required for the tumor cell migration and invasion. Phosphorylation of the serine residue 178 requires c-Jun NH2-terminal kinase (JNK) activation, which occurs downstream of epidermal growth factor receptor (EGFR)-mediated signaling and drives cell migration. In this study, we investigated the significance of paxillin Ser178 phosphorylation in breast cancer progression.Methods: We employed the rat mammary carcinoma MTLn3 cell line with which we established stabile variants of both wild type and mutant GFP-paxillin constructs. With those, we next performed several in vitro assays including cell proliferation, migration and focal adhesion dynamics. Finally, we monitored the metastatic spread of both cell line variants in an othrotopic mouse model for breast cancer.Results: Here we show that expression of the phospho-defective mutant paxillinS178A in the metastatic mammary adenocarcinoma MTLn3 cell-line significantly decreased EGF-induced cell migration, which was correlated with impaired focal adhesion dynamics. Moreover, paxillinS178A attenuated lung metastasis formation in an orthotopic In vivo mammary gland tumor/metastasis model, demonstrating the importance of JNK-mediated paxillin phosphorylation in breast cancer progression. Expression of paxillinS178A caused a decrease in EGFR expression, while re-expression of EGFR in MTLn3-paxillinS178A cells fully restored EGF-driven cell motility and focal adhesion dynamics. Furthermore, re-expression of EGFR in MTLn3-paxillinS178A rescued spontaneous metastasis from breast to lung.Conclusion: Overall our data show an important role for JNK-mediated paxillin Ser178 phosphorylation in the regulation of EGFR expression and thereby, in EGF-driven cell migration and metastasis formation

    Tumor cell migration screen identifies SRPK1 as breast cancer metastasis determinant

    No full text
    Tumor cell migration is a key process for cancer cell dissemination and metastasis that is controlled by signal-mediated cytoskeletal and cell matrix adhesion remodeling. Using a phagokinetic track assay with migratory H1299 cells, we performed an siRNA screen of almost 1,500 genes encoding kinases/phosphatases and adhesome- and migration-related proteins to identify genes that affect tumor cell migration speed and persistence. Thirty candidate genes that altered cell migration were validated in live tumor cell migration assays. Eight were associated with metastasis-free survival in breast cancer patients, with integrin β(3)–binding protein (ITGB3BP), MAP3K8, NIMA-related kinase (NEK2), and SHC-transforming protein 1 (SHC1) being the most predictive. Examination of genes that modulate migration indicated that SRPK1, encoding the splicing factor kinase SRSF protein kinase 1, is relevant to breast cancer outcomes, as it was highly expressed in basal breast cancer. Furthermore, high SRPK1 expression correlated with poor breast cancer disease outcome and preferential metastasis to the lungs and brain. In 2 independent murine models of breast tumor metastasis, stable shRNA-based SRPK1 knockdown suppressed metastasis to distant organs, including lung, liver, and spleen, and inhibited focal adhesion reorganization. Our study provides comprehensive information on the molecular determinants of tumor cell migration and suggests that SRPK1 has potential as a drug target for limiting breast cancer metastasis
    corecore