242 research outputs found

    Glyoxal and methylglyoxal in Atlantic seawater and marine aerosol particles: method development and first application during the Polarstern cruise ANT XXVII/4

    Get PDF
    An analytical method for the determination of the alpha dicarbonyls glyoxal (GLY) and methylglyoxal (MGLY) from seawater and marine aerosol particles is presented. The method is based on derivatization with o-(2,3,4,5,6-Pentafluorobenzyl)-hydroxylamine (PFBHA) reagent, solvent extraction and GC-MS (SIM) analysis. The method showed good precision (RSD < 10%), sensitivity (detection limits in the low ng L−1 range), and accuracy (good agreement between external calibration and standard addition). The method was applied to determine GLY and MGLY in oceanic water sampled during the Polarstern cruise ANT XXVII/4 from Capetown to Bremerhaven in spring 2011. GLY and MGLY were determined in the sea surface microlayer (SML) of the ocean and corresponding bulk water (BW) with average concentrations of 228 ng L−1 (GLY) and 196 ng L−1 (MGLY). The results show a significant enrichment (factor of 4) of GLY and MGLY in the SML. Furthermore, marine aerosol particles (PM1) were sampled during the cruise and analyzed for GLY (average concentration 0.19 ng m−3) and MGLY (average concentration 0.15 ng m−3). On aerosol particles, both carbonyls show a very good correlation with oxalate, supporting the idea of a secondary formation of oxalic acid via GLY and MGLY. Concentrations of GLY and MGLY in seawater and on aerosol particles were correlated to environmental parameters such as global radiation, temperature, distance to the coastline and biological activity. There are slight hints for a photochemical production of GLY and MGLY in the SML (significant enrichment in the SML, higher enrichment at higher temperature). However, a clear connection of GLY and MGLY to global radiation as well as to biological activity cannot be concluded from the data. A slight correlation between GLY and MGLY in the SML and in aerosol particles could be a hint for interactions, in particular of GLY, between seawater and the atmosphere

    Long-term chemical characterization of tropical and marine aerosols at the Cape Verde Atmospheric Observatory (CVAO) from 2007 to 2011

    Get PDF
    The first long-term aerosol sampling and chemical characterization results from measurements at the Cape Verde Atmospheric Observatory (CVAO) on the island of São Vicente are presented and are discussed with respect to air mass origin and seasonal trends. In total 671 samples were collected using a high-volume PM10 sampler on quartz fiber filters from January 2007 to December 2011. The samples were analyzed for their aerosol chemical composition, including their ionic and organic constituents. Back trajectory analyses showed that the aerosol at CVAO was strongly influenced by emissions from Europe and Africa, with the latter often responsible for high mineral dust loading. Sea salt and mineral dust dominated the aerosol mass and made up in total about 80% of the aerosol mass. The 5-year PM10 mean was 47.1 ± 55.5 μg m−2, while the mineral dust and sea salt means were 27.9 ± 48.7 and 11.1 ± 5.5 μg m−2, respectively. Non-sea-salt (nss) sulfate made up 62% of the total sulfate and originated from both long-range transport from Africa or Europe and marine sources. Strong seasonal variation was observed for the aerosol components. While nitrate showed no clear seasonal variation with an annual mean of 1.1 ± 0.6 μg m−3, the aerosol mass, OC (organic carbon) and EC (elemental carbon), showed strong winter maxima due to strong influence of African air mass inflow. Additionally during summer, elevated concentrations of OM were observed originating from marine emissions. A summer maximum was observed for non-sea-salt sulfate and was connected to periods when air mass inflow was predominantly of marine origin, indicating that marine biogenic emissions were a significant source. Ammonium showed a distinct maximum in spring and coincided with ocean surface water chlorophyll a concentrations. Good correlations were also observed between nss-sulfate and oxalate during the summer and winter seasons, indicating a likely photochemical in-cloud processing of the marine and anthropogenic precursors of these species. High temporal variability was observed in both chloride and bromide depletion, differing significantly within the seasons, air mass history and Saharan dust concentration. Chloride (bromide) depletion varied from 8.8 ± 8.5% (62 ± 42%) in Saharan-dust-dominated air mass to 30 \textpm 12% (87 ± 11%) in polluted Europe air masses. During summer, bromide depletion often reached 100% in marine as well as in polluted continental samples. In addition to the influence of the aerosol acidic components, photochemistry was one of the main drivers of halogenide depletion during the summer; while during dust events, displacement reaction with nitric acid was found to be the dominant mechanism. Positive matrix factorization (PMF) analysis identified three major aerosol sources: sea salt, aged sea salt and long-range transport. The ionic budget was dominated by the first two of these factors, while the long-range transport factor could only account for about 14% of the total observed ionic mass

    Naar een centrale afspraak voor de brede doelgroep Participatiewet? Advies aan SBCM

    Get PDF
    Op 5 juli overhandigde Huib van OIden, voorzitter van SBCM, A&O fonds voor de sociale werkvoorziening, het advies ‘Naar een centrale afspraak voor de brede doelgroep Participatiewet?’ aan staatssecretaris Jetta Klijnsma van Sociale Zaken en Werkgelegenheid. Het advies is opgesteld door AIAS-codirecteur Paul de Beer in samenwerking met Maisha van Pinxteren. Door de invoering van de Participatiewet zijn verschillende doelgroepen aan de onderkant van de arbeidsmarkt samengebracht onder één regeling (oud-WSW’ers, Wajongers en bijstandontvangers), maar is nog niet voorzien in een dekkend aanbod aan voorzieningen voor deze brede doelgroep. In het advies wordt aangedrongen op het maken van een centrale afspraak over de aanspraken die kansarme werkzoekenden en werkenden aan de onderkant van de arbeidsmarkt maken op scholing en begeleiding bij het zoeken en behouden van een plek op de arbeidsmarkt

    Theory of Adsorption and Surfactant Effect of Sb on Ag (111)

    Full text link
    We present first-principles studies of the adsorption of Sb and Ag on clean and Sb-covered Ag (111). For Sb, the {\it substitutional} adsorption site is found to be greatly favored with respect to on-surface fcc sites and to subsurface sites, so that a segregating surface alloy layer is formed. Adsorbed silver adatoms are more strongly bound on clean Ag(111) than on Sb-covered Ag. We propose that the experimentally reported surfactant effect of Sb is due to Sb adsorbates reducing the Ag adatom mobility. This gives rise to a high density of Ag islands which coalesce into regular layers.Comment: RevTeX 3.0, 11 pages, 0 figures] 13 July 199

    Development of embodied capital: Diet composition, foraging skills, and botanical knowledge of forager children in the Congo Basin

    Get PDF
    The embodied capital theory states that the extended juvenile period has enabled human foragers to acquire the complex foraging skills and knowledge needed to obtain food. Yet we lack detailed data on how forager children develop these skills and knowledge. Here, we examine the seasonal diet composition, foraging behavior, and botanical knowledge of Mbendjele BaYaka forager children in the Republic of the Congo. Our data, acquired through long-term observations involving full-day focal follows, show a high level of seasonal fluctuation in diet and foraging activities of BaYaka children, in response to the seasonal availability of their food sources. BaYaka children foraged more than half of the time independent from adults, predominantly collecting and eating fruits, tubers, and seeds. For these most-consumed food types, we found an early onset of specialization of foraging skills in children, similar to the gendered division in foraging in adults. Specifically, children were more likely to eat fruit and seed species when there were more boys and men in the group, and girls were more likely than boys to collect tuber species. In a botanical knowledge test, children were more accurate at identifying plant food species with increasing age, and they used fruits and trunks for species identification, more so than using leaves and barks. These results show how the foraging activities of BaYaka children may facilitate the acquisition of foraging skills and botanical knowledge and provide insights into the development of embodied capital. Additionally, BaYaka children consumed agricultural foods more than forest foods, probably reflecting BaYaka’s transition into a horticultural lifestyle. This change in diet composition may have significant consequences for the cognitive development of BaYaka children

    Development of an online-coupled MARGA upgrade for the 2&thinsp;h interval quantification of low-molecular-weight organic acids in the gas and particle phases

    Get PDF
    A method is presented to quantify the low-molecular-weight organic acids such as formic, acetic, propionic, butyric, pyruvic, glycolic, oxalic, malonic, succinic, malic, glutaric, and methanesulfonic acid in the atmospheric gas and particle phases, based on a combination of the Monitor for AeRosols and Gases in ambient Air (MARGA) and an additional ion chromatography (Compact IC) instrument. Therefore, every second hourly integrated MARGA gas and particle samples were collected and analyzed by the Compact IC, resulting in 12 values per day for each phase. A proper separation of the organic target acids was initially tackled by a laboratory IC optimization study, testing different separation columns, eluent compositions and eluent flow rates for both isocratic and gradient elution. Satisfactory resolution of all compounds was achieved using a gradient system with two coupled anion-exchange separation columns. Online pre-concentration with an enrichment factor of approximately 400 was achieved by solid-phase extraction consisting of a methacrylate-polymer-based sorbent with quaternary ammonium groups. The limits of detection of the method range between 0.5&thinsp;ng&thinsp;m−3 for malonate and 17.4&thinsp;ng&thinsp;m−3 for glutarate. Precisions are below 1.0&thinsp;%, except for glycolate (2.9&thinsp;%) and succinate (1.0&thinsp;%). Comparisons of inorganic anions measured at the TROPOS research site in Melpitz, Germany, by the original MARGA and the additional Compact IC are in agreement with each other (R2&thinsp;=&thinsp;0.95–0.99). Organic acid concentrations from May 2017 as an example period are presented. Monocarboxylic acids were dominant in the gas phase with mean concentrations of 306&thinsp;ng&thinsp;m−3 for acetic acid, followed by formic (199&thinsp;ng&thinsp;m−3), propionic (83&thinsp;ng&thinsp;m−3), pyruvic (76&thinsp;ng&thinsp;m−3), butyric (34&thinsp;ng&thinsp;m−3) and glycolic acid (32&thinsp;ng&thinsp;m−3). Particulate glycolate, oxalate and methanesulfonate were quantified with mean concentrations of 26, 31 and 30&thinsp;ng&thinsp;m−3, respectively. Elevated concentrations of gas-phase formic acid and particulate oxalate in the late afternoon indicate photochemical formation as a source.</p

    Relating particle hygroscopicity and CCN activity to chemical composition during the HCCT-2010 field campaign

    Get PDF
    Particle hygroscopic growth at 90% RH (relative humidity), cloud condensation nuclei (CCN) activity, and size-resolved chemical composition were concurrently measured in the Thüringer Wald mid-level mountain range in central Germany in the fall of 2010. The median hygroscopicity parameter values, κ, of 50, 75, 100, 150, 200, and 250 nm particles derived from hygroscopicity measurements are respectively 0.14, 0.14, 0.17, 0.21, 0.24, and 0.28 during the sampling period. The closure between HTDMA (Hygroscopicity Tandem Differential Mobility Analyzers)-measured (κHTDMA) and chemical composition-derived (κchem) hygroscopicity parameters was performed based on the Zdanovskii–Stokes–Robinson (ZSR) mixing rule. Using size-averaged chemical composition, the κ values are substantially overpredicted (30 and 40% for 150 and 100 nm particles). Introducing size-resolved chemical composition substantially improved closure. We found that the evaporation of NH4NO3, which may happen in a HTDMA system, could lead to a discrepancy in predicted and measured particle hygroscopic growth. The hygroscopic parameter of the organic fraction, κorg, is positively correlated with the O : C ratio (κorg = 0.19 × (O : C) − 0.03). Such correlation is helpful to define the κorg value in the closure study. κ derived from CCN measurement was around 30% (varied with particle diameters) higher than that determined from particle hygroscopic growth measurements (here, hydrophilic mode is considered only). This difference might be explained by the surface tension effects, solution non-ideality, gas-particle partitioning of semivolatile compounds, and the partial solubility of constituents or non-dissolved particle matter. Therefore, extrapolating from HTDMA data to properties at the point of activation should be done with great care. Finally, closure study between CCNc (cloud condensation nucleus counter)-measured (κCCN) and chemical composition (κCCN, chem) was performed using CCNc-derived κ values for individual components. The results show that the κCCN can be well predicted using particle size-resolved chemical composition and the ZSR mixing rule
    • …
    corecore