8 research outputs found

    Oxygen isotopic compositions of fresh rooftop micrometeorites from the Budel collection — Insights into the contemporary cosmic dust flux

    Get PDF
    Cosmic dust particles originate from a wide variety of solar system and interstellar objects, including sources not identified among meteorite collections. Particles that survive atmospheric entry are retrieved on the Earth's surface as micrometeorites. The recovery of these micrometeorites has recently advanced to rooftop sites. Here, we present the results of an extensive isotopic study on this type of rooftop micrometeorite from the Budel collection, the Netherlands, accreted to the Earth between October 31, 2018 and June 16, 2021. The triple oxygen isotopic compositions of 80 silica‐dominated cosmic spherules (CSs) with diameters ranging between 105 and 515 μm are obtained relying on 213 in situ spot analyses determined using ion microprobe. Our analyzed population spans a large range of isotopic compositions and is dominated by carbonaceous chondritic sources. In situ measurements on several CSs support a possible continuum between 16O‐rich and 16O‐poor compositions following the CM mixing line, showing that 16O‐poor CSs may be genetically related to aqueously altered carbonaceous chondrites. We demonstrate that weathering in the terrestrial environment has negligible effects on the isotopic compositions of the studied CSs and attempt to quantify the effects of kinetic mass‐dependent fractionation and admixture of terrestrial oxygen during atmospheric entry. The results further corroborate previously suggested relations between CS texture and the duration and intensity of the heating pulse experienced during atmospheric deceleration. Finally, the young and well‐constrained terrestrial age of the collection provides insights into the most recent flux of cosmic dust. Our results indicate no major recent changes in the global flux compared with collections sampled over thousand‐ to million‐year time scales and demonstrate that 16O‐poor material is still represented in the modern‐day cosmic dust flux at a relative abundance of ~13%–15%. As such, rooftop micrometeorites represent a valuable reservoir to study the characteristics of the contemporary cosmic dust flux

    Cosmic spherules from Widerøefjellet, Sør Rondane Mountains (East Antarctica)

    Get PDF
    A newly discovered sedimentary accumulation of micrometeorites in the Sør Rondane Mountains of East Antarctica, close to the Widerøefjellet summit at ~2750 meter above sea level, is characterized in this work. The focus here lies on 2099 melted cosmic spherules larger than 200 Οm, extracted from 3.2 kg of sampled sediment. Although the Widerøefjellet deposit shares similarities to the micrometeorite traps encountered in the Transantarctic Mountains, both subtle and more distinct differences in the physicochemical properties of the retrieved extraterrestrial particles and sedimentary host deposits are discernable (e.g., types of bedrock, degree of wind exposure, abundance of metal-rich particles). Unlike the Frontier Mountain and Miller Butte sedimentary traps, the size fraction below 240 Οm indicates some degree of sorting at Widerøefjellet, potentially through the redistribution by wind, preferential alteration of smaller particles, or processing biases. However, the cosmic spherules larger than 300 Οm appear largely unbiased following their size distribution, frequency by textural type, and bulk chemical compositions. Based on the available bedrock exposure ages for the Sør Rondane Mountains, extraterrestrial dust is estimated to have accumulated over a time span of ~1 to 3 Ma at Widerøefjellet. Consequently, the Widerøefjellet collection reflects a substantial reservoir to sample the micrometeorite influx over this time interval. Petrographic observations and 3D microscopic CT imaging are combined with chemical and triple-oxygen isotopic analyses of silicate-rich cosmic spherules larger than 325 Οm. The major element composition of 49 cosmic spherules confirms their principally chondritic parentage. For 18 glassy, 15 barred olivine, and 11 cryptocrystalline cosmic spherules, trace element concentrations are also reported on. Based on comparison with evaporation experiments reported in literature and accounting for siderophile and chalcophile element losses during high-density phase segregation and ejection, the observed compositional sequence largely reflects progressive heating and evaporation during atmospheric passage accompanied by significant redox shifts, although the influence of (refractory) chondrite mineral constituents and terrestrial alteration cannot be excluded in all cases. Twenty-eight cosmic spherules larger than 325 Οm analyzed for triple-oxygen isotope ratios confirm inheritance from mostly carbonaceous chondritic precursor materials (~55% of the particles). Yet, ~30% of the measured cosmic spherules and ~50% of all glassy cosmic spherules are characterized by oxygen isotope ratios above the terrestrial fractionation line, implying genetic links to ordinary chondrites and parent bodies currently unsampled by meteorites. The structural, textural, chemical, and isotopic characteristics of the cosmic spherules from the Sør Rondane Mountains, and particularly the high proportion of Mg-rich glass particles contained therein, imply a well-preserved and representative new sedimentary micrometeorite collection from a previously unstudied region in East Antarctica characterized by distinct geological and exposure histories

    Investigation of (micro-)meteoritic materials at the new hard X-ray imaging PUMA beamline for heritage sciences

    No full text
    At the French synchrotron facility SOLEIL, a new X-ray imaging facility PUMA (Photons Utilisés pour les Matériaux Anciens) has been made available to scientific communities studying materials from cultural heritage. This new instrument aims to achieve 2D and 3D imaging with microscopic resolution, applying different analytical techniques including X-ray fluorescence spectroscopy (XRF), X-ray absorption spectroscopy (XAS), X-ray diffraction and phase-contrast imaging. In order to discover its capabilities a detailed analytical characterization of this beamline as an analytical and imaging tool is deemed necessary. In this work, (confocal) XRF and XAS analyses are demonstrated using the Seymchan pallasite meteorite and an Antarctic unmelted micrometeorite as case studies. The obtained spatial resolution (2 µm × 3 µm) and sensitivity (detection limits <10 p.p.m. for 1 s acquisition at 18 keV) show that PUMA is a competitive state-of-the-art beamline, providing several high-profile and high-in-demand analytical methods while maintaining applicability towards a wide range of heritage-oriented sciences

    Elemental and oxygen isotopic fractionation recorded in highly vaporized cosmic spherules from Widerøefjellet, Sør Rondane Mountains (East Antarctica)

    No full text
    Upon passage through Earth's atmosphere, micrometeorites undergo variable degrees of melting and evaporation. Among the various textural and chemical groups recognized among cosmic spherules, that is, melted micrometeorites, a subset of particles may indicate anomalously high degrees of vaporization based on their chemical and isotopic properties. Here, a selection of such refractory element‐enriched cosmic spherules from Widerøefjellet (Sør Rondane Mountains, East Antarctica) is characterized for their petrographic features, major and trace element concentrations (N = 35), and oxygen isotopic compositions (N = 23). Following chemical classification, the highly vaporized particles can be assigned to either the “CAT‐like” or the “High Ca‐Al” cosmic spherule groups. However, through the combination of major and trace element concentrations and oxygen isotopic data, a larger diversity of processes and precursor materials are identified that lead to the final compositions of refractory element‐enriched particles. These include fragmentation, disproportional sampling of specific mineral constituents, differential melting, metal bead extraction, redox shifts, and evaporation. Based on specific element concentrations (e.g., Sc, Zr, Eu, Tm) and ratios (e.g., Fe/Mg, CaO + Al2O3/Sc + Y + Zr + Hf), and variations of O isotope compositions, “CAT‐like” and “High Ca‐Al” cosmic spherules likely represent a continuum between mineral endmembers from both primitive and differentiated parent bodies that experienced variable degrees of evaporation

    Decoupling of chemical and isotope fractionation processes during atmospheric heating of micrometeorites

    No full text
    Micrometeorites experience varying degrees of evaporation and mixing with atmospheric oxygen during atmospheric entry. Evaporation due to gas drag heating alters the physicochemical properties of fully melted cosmic spherules (CSs), including the size, chemical and isotopic compositions and is thus expressed in its chemical and isotopic signatures. However, the extent of evaporation and atmospheric mixing in CSs often remains unclear, leading to uncertainties in precursor body identification and statistics. Several studies have previously estimated the extent of evaporation based on the contents of major refractory elements Ca and Al in combination with the determined Fe/Si atomic ratios. Similarly, attempts have been made to design classification schemes based on isotopic variations. However, a full integration of any previously defined chemical classification schemes with the observed isotopic variability has not yet been successful. As evaporation can lead to both chemical and isotope fractionation, it is important to verify whether the estimated degrees of evaporation based on chemical and isotopic proxies converge. Here, we have analysed the major and trace element compositions of 57 chondritic (mostly V-type) CSs, along with their Fe isotope ratios. The chemical (Zn, Na, K or CaO and Al2O3 concentrations) and δ56Fe isotope fractionation measured in these particles show no correlation. The interpretation of these results is twofold: (i) isotopic and chemical fractionation are governed by distinct processes or (ii) the proxies selected for chemical and isotope fractionation are inadequate. While the initial Fe isotopic ratios of chondrites are constrained within a relatively narrow range (0.005 ± 0.008‰ δ56Fe), the chemical compositions of CSs display larger variability. Cosmic spherules are thus often not chemically representative of their precursor bodies, due to their small size. As oxygen isotopes are commonly used to refine the precursor bodies of meteorites, triple oxygen isotope ratios were measured in thirty-seven of the characterized CSs. Based on the relationship between δ18O and δ57Fe, the evaporation effect on the O isotope system can be calculated, which allows for a more accurate parent body determination. Using this correction method, two ‘Group 4’ spherules with strongly variable degrees of isotope fractionation (δ56Fe of ∼1.0‰ and 29.1‰, respectively) could be distinguished. Furthermore, it was observed that all CSs that probably have a OC-like heritage underwent roughly the same degree of atmospheric mixing (∼8‰ δ18O). This highlights the potential of including Fe isotope measurements to the regular methodologies applied to CS studies

    A large meteoritic event over Antarctica ca. 430 ka ago inferred from chondritic spherules from the Sør Rondane Mountains

    No full text
    Large airbursts, the most frequent hazardous impact events, are estimated to occur orders of magnitude more frequently than crater-forming impacts. However, finding traces of these events is impeded by the difficulty of identifying them in the recent geological record. Here, we describe condensation spherules found on top of Walnumfjellet in the Sør Rondane Mountains, Antarctica. Affinities with similar spherules found in EPICA Dome C and Dome Fuji ice cores suggest that these particles were produced during a single-asteroid impact ca. 430 thousand years (ka) ago. The lack of a confirmed crater on the Antarctic ice sheet and geochemical and 18O-poor oxygen isotope signatures allow us to hypothesize that the impact particles result from a touchdown event, in which a projectile vapor jet interacts with the Antarctic ice sheet. Numerical models support a touchdown scenario. This study has implications for the identification and inventory of large cosmic events on Earth.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Micrometeorite collections: a review and their current status

    Get PDF
    Micrometeorites are estimated to represent the main part of the present flux of extraterrestrial matter found on the Earth’s surface and provide valuable samples to probe the interplanetary medium. Here, we describe large and representative collections of micrometeorites currently available to the scientific community. These include Antarctic collections from surface ice and snow, as well as glacial sediments from the eroded top of nunataks—summits outcropping from the icesheet—and moraines. Collections extracted from deep-sea sediments (DSS) produced a large number of micrometeorites, in particular, iron-rich cosmic spherules that are rarer in other collections. Collections from the old and stable surface of the Atacama Desert show that finding large numbers of micrometeorites is not restricted to polar regions or DSS. The advent of rooftop collections marks an important step into involving citizen science in the study of micrometeorites, as well as providing potential sampling locations over all latitudes to explore the modern flux. We explore their strengths of the collections to address specific scientific questions and their potential weaknesses. The future of micrometeorite research will involve the finding of large fossil micrometeorite collections and benefit from recent advances in sampling cosmic dust directly from the air. This article is part of the theme issue ‘Dust in the Solar System and beyond’
    corecore