561 research outputs found

    Transcriptome analysis of the central nervous system of the mollusc Lymnaea stagnalis

    Get PDF
    Background: The freshwater snail Lymnaea stagnalis (L. stagnalis) has served as a successful model for studies in the field of Neuroscience. However, a serious drawback in the molecular analysis of the nervous system of L. stagnalis has been the lack of large-scale genomic or neuronal transcriptome information, thereby limiting the use of this unique model. Results: In this study, we report 7,712 distinct EST sequences (median length: 847 nucleotides) of a normalized L. stagnalis central nervous system (CNS) cDNA library, resulting in the largest collection of L. stagnalis neuronal transcriptome data currently available. Approximately 42% of the cDNAs can be translated into more than 100 consecutive amino acids, indicating the high quality of the library. The annotated sequences contribute 12% of the predicted transcriptome size of 20,000. Surprisingly, approximately 37% of the L. stagnalis sequences only have a tBLASTx hit in the EST library of another snail species Aplysia californica (A. californica) even using a low stringency e-value cutoff at 0.01. Using the same cutoff, approximately 67% of the cDNAs have a BLAST hit in the NCBI non-redundant protein and nucleotide sequence databases (nr and nt), suggesting that one third of the sequences may be unique to L. stagnalis. Finally, using the same cutoff (0.01), more than half of the cDNA sequences (54%) do not have a hit in nematode, fruitfly or human genome data, suggesting that the L. stagnalis transcriptome is significantly different from these species as well. The cDNA sequences are enriched in the following gene ontology functional categories: protein binding, hydrolase, transferase, and catalytic enzymes. Conclusion: This study provides novel molecular insights into the transcriptome of an important molluscan model organism. Our findings will contribute to functional analyses in neurobiology, and comparative evolutionary biology. The L. stagnalis CNS EST database is available at http://www.Lymnaea.org/. © 2009 Feng et al; licensee BioMed Central Ltd

    Precision assessment of bowel motion quantification using 3D cine-MRI for radiotherapy

    Get PDF
    Objective. The bowel is an important organ at risk for toxicity during pelvic and abdominal radiotherapy. Identifying regions of high and low bowel motion with MRI during radiotherapy may help to understand the development of bowel toxicity, but the acquisition time of MRI is rather long. The aim of this study is to retrospectively evaluate the precision of bowel motion quantification and to estimate the minimum MRI acquisition time. Approach. We included 22 gynaecologic cancer patients receiving definitive radiotherapy with curative intent. The 10 min pre-treatment 3D cine-MRI scan consisted of 160 dynamics with an acquisition time of 3.7 s per volume. Deformable registration of consecutive images generated 159 deformation vector fields (DVFs). We defined two motion metrics, the 50th percentile vector lengths (VL50) of the complete set of DVFs was used to measure median bowel motion. The 95th percentile vector lengths (VL95) was used to quantify high motion of the bowel. The precision of these metrics was assessed by calculating their variation (interquartile range) in three different time frames, defined as subsets of 40, 80, and 120 consecutive images, corresponding to acquisition times of 2.5, 5.0, and 7.5 min, respectively. Main results. For the full 10 min scan, the minimum motion per frame of 50% of the bowel volume (M50%) ranged from 0.6-3.5 mm for the VL50 motion metric and 2.3-9.0 mm for the VL95 motion metric, across all patients. At 7.5 min scan time, the variation in M50% was less than 0.5 mm in 100% (VL50) and 95% (VL95) of the subsets. A scan time of 5.0 and 2.5 min achieved a variation within 0.5 mm in 95.2%/81% and 85.7%/57.1% of the subsets, respectively. Significance. Our 3D cine-MRI technique quantifies bowel loop motion with 95%-100% confidence with a precision of 0.5 mm variation or less, using a 7.5 min scan time.</p

    A novel amplitude binning strategy to handle irregular breathing during 4DMRI acquisition: improved imaging for radiotherapy purposes.

    Get PDF
    Background For radiotherapy of abdominal cancer, four-dimensional magnetic resonance imaging (4DMRI) is desirable for tumor definition and the assessment of tumor and organ motion. However, irregular breathing gives rise to image artifacts. We developed a outlier rejection strategy resulting in a 4DMRI with reduced image artifacts in the presence of irregular breathing.Methods We obtained 2D T2-weighted single-shot turbo spin echo images, with an interleaved 1D navigator acquisition to obtain the respiratory signal during free breathing imaging in 2 patients and 12 healthy volunteers. Prior to binning, upper and lower inclusion thresholds were chosen such that 95% of the acquired images were included, while minimizing the distance between the thresholds (inclusion range (IR)). We compared our strategy (Min95) with three commonly applied strategies: phase binning with all images included (Phase), amplitude binning with all images included (MaxIE), and amplitude binning with the thresholds set as the mean end-inhale and mean end-exhale diaphragm positions (MeanIE). We compared 4DMRI quality based on: Data included (DI); percentage of images remaining after outlier rejection. Reconstruction completeness (RC); percentage of bin-slice combinations containing at least one image after binning. Intra-bin variation (IBV); interquartile range of the diaphragm position within the bin-slice combination, averaged over three central slices and ten respiratory bins. IR. Image smoothness (S); quantified by fitting a parabola to the diaphragm profile in a sagittal plane of the reconstructed 4DMRI. A two-sided Wilcoxon's signed-rank test was used to test for significance in differences between the Min95 strategy and the Phase, MaxIE, and MeanIE strategies.Results Based on the fourteen subjects, the Min95 binning strategy outperformed the other strategies with a mean RC of 95.5%, mean IBV of 1.6 mm, mean IR of 15.1 mm and a mean S of 0.90. The Phase strategy showed a poor mean IBV of 6.2 mm and the MaxIE strategy showed a poor mean RC of 85.6%, resulting in image artifacts (mean S of 0.76). The MeanIE strategy demonstrated a mean DI of 85.6%.Conclusions Our Min95 reconstruction strategy resulted in a 4DMRI with less artifacts and more precise diaphragm position reconstruction compared to the other strategies.Trial registration Volunteers: protocol W15_373#16.007; patients: protocol NL47713.018.14

    Search for the Standard Model Higgs boson in the decay channel H→ZZ(*)→4ℓ with the ATLAS detector

    Get PDF
    A search for the Standard Model Higgs boson in the decay channel H→ZZ(*)→ℓ+ℓ−ℓ′+ℓ′−, where ℓ=e,μ, is presented. Proton-proton collision data at √s = 7 TeV recorded with the ATLAS detector and corresponding to an average integrated luminosity of 2.1 fb−1 are compared to the Standard Model expectations. Upper limits on the production cross section of a Standard Model Higgs boson with a mass between 110 and 600 GeV are derived. The observed (expected) 95% confidence level upper limit on the production cross section for a Higgs boson with a mass of 194 GeV, the region with the best expected sensitivity for this search, is 0.99 (1.01) times the Standard Model prediction. The Standard Model Higgs boson is excluded at 95% confidence level in the mass ranges 191-197, 199-200 and 214-224 GeV
    • …
    corecore