233 research outputs found

    Hypoxia Inducible Factor 3α Plays a Critical Role in Alveolarization and Distal Epithelial Cell Differentiation during Mouse Lung Development

    Get PDF
    Lung development occurs under relative hypoxia and the most important oxygen-sensitive response pathway is driven by Hypoxia Inducible Factors (HIF). HIFs are heterodimeric transcription factors of an oxygen-sensitive subunit, HIFα, and a constitutively expressed subunit, HIF1β. HIF1α and HIF2α, encoded by two separate genes, contribute to the activation of hypoxia inducible genes. A third HIFα gene, HIF3α, is subject to alternative promoter usage and splicing, leading to three major isoforms, HIF3α, NEPAS and IPAS. HIF3α gene products add to the complexity of the hypoxia response as they function as dominant negative inhibitors (IPAS) or weak transcriptional activators (HIF3α/NEPAS). Previously, we and others have shown the importance of the Hif1α and Hif2α factors in lung development, and here we investigated the role of Hif3α during pulmonary development. Therefore, HIF3α was conditionally expressed in airway epithelial cells during gestation and although HIF3α transgenic mice were born alive and appeared normal, their lungs showed clear abnormalities, including a post-pseudoglandular branching defect and a decreased number of alveoli. The HIF3α expressing lungs displayed reduced numbers of Clara cells, alveolar epithelial type I and type II cells. As a result of HIF3α expression, the level of Hif2α was reduced, but that of Hif1α was not affected. Two regulatory genes, Rarβ, involved in alveologenesis, and Foxp2, a transcriptional repressor of the Clara cell specific Ccsp gene, were significantly upregulated in the HIF3α expressing lungs. In addition, aberrant basal cells were observed distally as determined by the expression of Sox2 and p63. We show that Hif3α binds a conserved HRE site in the Sox2 promoter and weakly transactivated a reporter construct containing the Sox2 promoter region. Moreover, Hif3α affected the expression of genes not typically involved in the hypoxia response, providing evidence for a novel function of Hif3α beyond the hypoxia response

    Differentiated type II pneumocytes can be reprogrammed by ectopic Sox2 expression

    Get PDF
    The adult lung contains several distinct stem cells, although their properties and full potential are still being sorted out. We previously showed that ectopic Sox2 expression in the developing lung manipulated the fate of differentiating cells. Here, we addressed the question whether fully differentiated cells could be redirected towards another cell type. Therefore, we used transgenic mice to express an inducible Sox2 construct in type II pneumocytes, which are situated in the distal, respiratory areas of the lung. Within three days after the induction of the transgene, the type II cells start to proliferate and form clusters of cuboidal cells. Prolonged Sox2 expression resulted in the reversal of the type II cell towards a more embryonic, precursor-like cell, being positive for the stem cell markers Sca1 and Ssea1. Moreover, the cells started to co-express Spc and Cc10, characteristics of bronchioalveolar stem cells. We demonstrated that Sox2 directly regulates the expression of Sca1. Subsequently, these cells expressed Trp63, a marker for basal cells of the trachea. So, we show that the expression of one transcription factor in fully differentiated, distal lung cells changes their fate towards proximal cells through intermediate cell types. This may have implications for regenerative medicine, and repair of diseased and damaged lungs

    Selection of potential targets for stratifying congenital pulmonary airway malformation patients with molecular imaging:is MUC1 the one?

    Get PDF
    Currently there is a global lack of consensus about the best treatment for asymptomatic congenital pulmonary airway malformation (CPAM) patients. The somatic KRAS mutations commonly found in adult lung cancer combined with mucinous proliferations are sometimes found in CPAM. For this risk of developing malignancy, 70% of paediatric surgeons perform a resection for asymptomatic CPAM. In order to stratify these patients into high-and low-risk groups for developing malignancy, a minimally invasive diagnostic method is needed, for example targeted molecular imaging. A prerequisite for this technique is a cell membrane bound target. The aim of this study was to review the literature to identify potential targets for molecular imaging in CPAM patients and perform a first step to validate these findings. A systematic search was conducted to identify possible targets in CPAM and adenocarcinoma in situ (AIS) patients. The most interesting targets were evaluated with immunofluorescent staining in adjacent lung tissue, KRAS+ CPAM tissue and KRAS– CPAM tissue. In 185 included studies, 143 possible targets were described, of which 20 targets were upregulated and membrane-bound. Six of them were also upregulated in lung AIS tissue (CEACAM5, E-cadherin, EGFR, ERBB2, ITGA2 and MUC1) and as such of possible interest. Validating studies showed that MUC1 is a potential interesting target. This study provides an extensive overview of all known potential targets in CPAM that might identify those patients at risk for malignancy and conducted the first step towards validation, identifying MUC1 as the most promising target.</p

    Formalin-Fixed, Paraffin-Embedded–Targeted Locus Capture:A Next-Generation Sequencing Technology for Accurate DNA-Based Gene Fusion Detection in Bone and Soft Tissue Tumors

    Get PDF
    Chromosomal rearrangements are important drivers in cancer, and their robust detection is essential for diagnosis, prognosis, and treatment selection, particularly for bone and soft tissue tumors. Current diagnostic methods are hindered by limitations, including difficulties with multiplexing targets and poor quality of RNA. A novel targeted DNA-based next-generation sequencing method, formalin-fixed, paraffin-embedded–targeted locus capture (FFPE-TLC), has shown advantages over current diagnostic methods when applied on FFPE lymphomas, including the ability to detect novel rearrangements. We evaluated the utility of FFPE-TLC in bone and soft tissue tumor diagnostics. FFPE-TLC sequencing was successfully applied on noncalcified and decalcified FFPE samples (n = 44) and control samples (n = 19). In total, 58 rearrangements were identified in 40 FFPE tumor samples, including three previously negative samples, and none was identified in the FFPE control samples. In all five discordant cases, FFPE-TLC could identify gene fusions where other methods had failed due to either detection limits or poor sample quality. FFPE-TLC achieved a high specificity and sensitivity (no false positives and negatives). These results indicate that FFPE-TLC is applicable in cancer diagnostics to simultaneously analyze many genes for their involvement in gene fusions. Similar to the observation in lymphomas, FFPE-TLC is a good DNA-based alternative to the conventional methods for detection of rearrangements in bone and soft tissue tumors.</p

    Functional outcome and quality of life 5 and 12.5 years after aneurysmal subarachnoid haemorrhage

    Get PDF
    Patients who recover from aneurysmal subarachnoid haemorrhage (SAH) often remain disabled or have persisting symptoms with a reduced quality of life (QoL). We assessed functional outcome and QoL 5 and 12.5 years after SAH. In a consecutive series of 64 patients with mean age at SAH of 51 years, initial outcome assessments had been performed at 4 and 18 months after SAH. At the initial and current outcome assessments, functional outcome was measured with the modified Rankin Scale (mRS) and QoL with the SF-36 and a visual analogue scale (VAS). We studied the change in outcome measurements over time. We used the non-parametric Wilcoxon test to compare differences in mRS grades and calculated differences with corresponding 95% confidence intervals in the domain scores of the SF-36 and the VAS. After 5 years, seven patients had died and five patients had missing data. Compared with the 4-month follow-up, the mRS had improved in 29 of the 52 patients, remained similar in 19 patients. The overall QoL (SF-36 domains and VAS score) was better. At 12.5 years an additional six patients had died. Compared to the 4-month study, 25 of the 46 remaining patients had improved mRS, 12 had remained the same and in nine patients the mRS had worsened. Between the 5 and the 12.5 years follow-up, the improvement in mRS had decreased but patients reported overall a better QoL. Among long-time survivors, QoL may improve more than a decade after SAH

    Hypoxia inducible factor 2α (HIF2α/EPAS1) is associated with development of pulmonary hypertension in severe congenital diaphragmatic hernia patients

    Get PDF
    We show that hypoxia inducible factor 2α (HIF2α) is highly expressed in patients with pulmonary hypertension (PH). HIF2α is expressed in every patient with congenital diaphragmatic hernia, while only half of the controls express HIF2α. Our data suggest that HIF2α is a link between hypoxia and the development of PH

    Methylene blue not ferrocene: Optimal reporters for electrochemical detection of protease activity

    Get PDF
    AbstractElectrochemical peptide-based biosensors are attracting significant attention for the detection and analysis of proteins. Here we report the optimisation and evaluation of an electrochemical biosensor for the detection of protease activity using self-assembled monolayers (SAMs) on gold surfaces, using trypsin as a model protease. The principle of detection was the specific proteolytic cleavage of redox-tagged peptides by trypsin, which causes the release of the redox reporter, resulting in a decrease of the peak current as measured by square wave voltammetry. A systematic enhancement of detection was achieved through optimisation of the properties of the redox-tagged peptide; this included for the first time a side-by-side study of the applicability of two of the most commonly applied redox reporters used for developing electrochemical biosensors, ferrocene and methylene blue, along with the effect of changing both the nature of the spacer and the composition of the SAM. Methylene blue-tagged peptides combined with a polyethylene-glycol (PEG) based spacer were shown to be the best platform for trypsin detection, leading to the highest fidelity signals (characterised by the highest sensitivity (signal gain) and a much more stable background than that registered when using ferrocene as a reporter). A ternary SAM (T-SAM) configuration, which included a PEG-based dithiol, minimised the non-specific adsorption of other proteins and was sensitive towards trypsin in the clinically relevant range, with a Limit of Detection (LoD) of 250pM. Kinetic analysis of the electrochemical response with time showed a good fit to a Michaelis–Menten surface cleavage model, enabling the extraction of values for kcat and KM. Fitting to this model enabled quantitative determination of the solution concentration of trypsin across the entire measurement range. Studies using an enzyme inhibitor and a range of real world possible interferents demonstrated a selective response to trypsin cleavage. This indicates that a PEG-based peptide, employing methylene blue as redox reporter, and deposited on an electrode as a ternary SAM configuration, is a suitable platform to develop clinically-relevant and quantitative electrochemical peptide-based protease biosensing
    corecore