44 research outputs found

    Traveling pulse solutions in a three-component FitzHugh-Nagumo Model

    Full text link
    We use geometric singular perturbation techniques combined with an action functional approach to study traveling pulse solutions in a three-component FitzHugh--Nagumo model. First, we derive the profile of traveling 11-pulse solutions with undetermined width and propagating speed. Next, we compute the associated action functional for this profile from which we derive the conditions for existence and a saddle-node bifurcation as the zeros of the action functional and its derivatives. We obtain the same conditions by using a different analytical approach that exploits the singular limit of the problem. We also apply this methodology of the action functional to the problem for traveling 22-pulse solutions and derive the explicit conditions for existence and a saddle-node bifurcation. From these we deduce a necessary condition for the existence of traveling 22-pulse solutions. We end this article with a discussion related to Hopf bifurcations near the saddle-node bifurcation

    Travelling wave solutions in a negative nonlinear diffusion-reaction model

    Full text link
    We use a geometric approach to prove the existence of smooth travelling wave solutions of a nonlinear diffusion-reaction equation with logistic kinetics and a convex nonlinear diffusivity function which changes sign twice in our domain of interest. We determine the minimum wave speed, c*, and investigate its relation to the spectral stability of the travelling wave solutions.Comment: 23 pages, 10 figure

    Unfolding symmetric Bogdanov-Takens bifurcations for front dynamics in a reaction-diffusion system

    Get PDF
    This manuscript extends the analysis of a much studied singularly perturbed three-component reaction-diffusion system for front dynamics in the regime where the essential spectrum is close to the origin. We confirm a conjecture from a preceding paper by proving that the triple multiplicity of the zero eigenvalue gives a Jordan chain of length three. Moreover, we simplify the center manifold reduction and computation of the normal form coefficients by using the Evans function for the eigenvalues. Finally, we prove the unfolding of a Bogdanov-Takens bifurcation with symmetry in the model. This leads to stable periodic front motion, including stable traveling breathers, and these results are illustrated by numerical computations.Comment: 39 pages, 7 figure

    A Holling-Tanner predator-prey model with strong Allee effect

    Full text link
    We analyse a modified Holling-Tanner predator-prey model where the predation functional response is of Holling type II and we incorporate a strong Allee effect associated with the prey species production. The analysis complements results of previous articles by Saez and Gonzalez-Olivares (SIAM J. Appl. Math. 59 1867-1878, 1999) and Arancibia-Ibarra and Gonzalez-Olivares (Proc. CMMSE 2015 130-141, 2015)discussing Holling-Tanner models which incorporate a weak Allee effect. The extended model exhibits rich dynamics and we prove the existence of separatrices in the phase plane separating basins of attraction related to co-existence and extinction of the species. We also show the existence of a homoclinic curve that degenerates to form a limit cycle and discuss numerous potential bifurcations such as saddle-node, Hopf, and Bogadonov-Takens bifurcations

    Random Evolutionary Dynamics in Predator-Prey Systems Yields Large, Clustered Ecosystems

    Full text link
    We study the effect of speciation, i.e. the introduction of new species through evolution into communities, in the setting of predator-prey systems. Predator-prey dynamics is classically well modeled by Lotka-Volterra equations, also when multiple predator and prey species co-exist. The consequences of the emergence of new species in such systems are much less well understood. We find that introducing random evolving species leads to robust ecosystems in which large numbers of species coexist. Crucially, in these large ecosystems an emergent clustering of species is observed, tying functional differences to phylogenetic history

    Random Evolutionary Dynamics in Predator-Prey Systems Yields Large, Clustered Ecosystems

    Get PDF
    We study the effect of speciation, i.e. the introduction of new species through evolution into communities, in the setting of predator-prey systems. Predator-prey dynamics is classically well modeled by Lotka-Volterra equations, also when multiple predator and prey species co-exist. The consequences of the emergence of new species in such systems are much less well understood. We find that introducing random evolving species leads to robust ecosystems in which large numbers of species coexist. Crucially, in these large ecosystems an emergent clustering of species is observed, tying functional differences to phylogenetic history

    Shock-fronted travelling waves in a reaction-diffusion model with nonlinear forward-backward-forward diffusion

    Full text link
    Reaction-diffusion equations (RDEs) are often derived as continuum limits of lattice-based discrete models. Recently, a discrete model which allows the rates of movement, proliferation and death to depend upon whether the agents are isolated has been proposed, and this approach gives various RDEs where the diffusion term is convex and can become negative (Johnston et al., Sci. Rep. 7, 2017), i.e. forward-backward-forward diffusion. Numerical simulations suggest these RDEs support shock-fronted travelling waves when the reaction term includes an Allee effect. In this work we formalise these preliminary numerical observations by analysing the shock-fronted travelling waves through embedding the RDE into a larger class of higher order partial differential equations (PDEs). Subsequently, we use geometric singular perturbation theory to study this larger class of equations and prove the existence of these shock-fronted travelling waves. Most notable, we show that different embeddings yield shock-fronted travelling waves with different properties.Comment: 41 pages, 11 figure
    corecore